Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

Overview

⏱ pytorch-benchmark

Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption

Install

pip install pytorch-benchmark

Usage

import torch
from torchvision.models import efficientnet_b0
from pytorch_benchmark import benchmark


model = efficientnet_b0()
sample = torch.randn(8, 3, 224, 224)  # (B, C, H, W)
results = benchmark(model, sample, num_runs=100)

Sample results đź’»

Macbook Pro (16-inch, 2019), 2.6 GHz 6-Core Intel Core i7
device: cpu
flops: 401669732
machine_info:
  cpu:
    architecture: x86_64
    cores:
      physical: 6
      total: 12
    frequency: 2.60 GHz
    model: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
  gpus: null
  memory:
    available: 5.86 GB
    total: 16.00 GB
    used: 7.29 GB
  system:
    node: d40049
    release: 21.2.0
    system: Darwin
params: 5288548
timing:
  batch_size_1:
    on_device_inference:
      human_readable:
        batch_latency: 74.439 ms +/- 6.459 ms [64.604 ms, 96.681 ms]
        batches_per_second: 13.53 +/- 1.09 [10.34, 15.48]
      metrics:
        batches_per_second_max: 15.478907181264278
        batches_per_second_mean: 13.528026359855625
        batches_per_second_min: 10.343281300091244
        batches_per_second_std: 1.0922382209314958
        seconds_per_batch_max: 0.09668111801147461
        seconds_per_batch_mean: 0.07443853378295899
        seconds_per_batch_min: 0.06460404396057129
        seconds_per_batch_std: 0.006458734193132054
  batch_size_8:
    on_device_inference:
      human_readable:
        batch_latency: 509.410 ms +/- 30.031 ms [405.296 ms, 621.773 ms]
        batches_per_second: 1.97 +/- 0.11 [1.61, 2.47]
      metrics:
        batches_per_second_max: 2.4673319862230025
        batches_per_second_mean: 1.9696935126370148
        batches_per_second_min: 1.6083039834656554
        batches_per_second_std: 0.11341204895590185
        seconds_per_batch_max: 0.6217730045318604
        seconds_per_batch_mean: 0.509410228729248
        seconds_per_batch_min: 0.40529608726501465
        seconds_per_batch_std: 0.030031445467788704
Server with NVIDIA GeForce RTX 2080 and Intel Xeon 2.10GHz CPU
device: cuda
flops: 401669732
machine_info:
  cpu:
    architecture: x86_64
    cores:
      physical: 16
      total: 32
    frequency: 3.00 GHz
    model: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
  gpus:
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  memory:
    available: 119.98 GB
    total: 125.78 GB
    used: 4.78 GB
  system:
    node: monster
    release: 4.15.0-167-generic
    system: Linux
max_inference_memory: 736250368
params: 5288548
post_inference_memory: 21402112
pre_inference_memory: 21402112
timing:
  batch_size_1:
    cpu_to_gpu:
      human_readable:
        batch_latency: "144.815 \xB5s +/- 16.103 \xB5s [136.614 \xB5s, 272.751 \xB5\
          s]"
        batches_per_second: 6.96 K +/- 535.06 [3.67 K, 7.32 K]
      metrics:
        batches_per_second_max: 7319.902268760908
        batches_per_second_mean: 6962.865857677197
        batches_per_second_min: 3666.3496503496503
        batches_per_second_std: 535.0581873859935
        seconds_per_batch_max: 0.0002727508544921875
        seconds_per_batch_mean: 0.00014481544494628906
        seconds_per_batch_min: 0.0001366138458251953
        seconds_per_batch_std: 1.6102982159292097e-05
    gpu_to_cpu:
      human_readable:
        batch_latency: "106.168 \xB5s +/- 17.829 \xB5s [53.167 \xB5s, 248.909 \xB5\
          s]"
        batches_per_second: 9.64 K +/- 1.60 K [4.02 K, 18.81 K]
      metrics:
        batches_per_second_max: 18808.538116591928
        batches_per_second_mean: 9639.942102368092
        batches_per_second_min: 4017.532567049808
        batches_per_second_std: 1595.7983033708472
        seconds_per_batch_max: 0.00024890899658203125
        seconds_per_batch_mean: 0.00010616779327392578
        seconds_per_batch_min: 5.316734313964844e-05
        seconds_per_batch_std: 1.7829135190772566e-05
    on_device_inference:
      human_readable:
        batch_latency: "15.567 ms +/- 546.154 \xB5s [15.311 ms, 19.261 ms]"
        batches_per_second: 64.31 +/- 1.96 [51.92, 65.31]
      metrics:
        batches_per_second_max: 65.31149174711928
        batches_per_second_mean: 64.30692850265713
        batches_per_second_min: 51.918698784442846
        batches_per_second_std: 1.9599322351815833
        seconds_per_batch_max: 0.019260883331298828
        seconds_per_batch_mean: 0.015567030906677246
        seconds_per_batch_min: 0.015311241149902344
        seconds_per_batch_std: 0.0005461537255227954
    total:
      human_readable:
        batch_latency: "15.818 ms +/- 549.873 \xB5s [15.561 ms, 19.461 ms]"
        batches_per_second: 63.29 +/- 1.92 [51.38, 64.26]
      metrics:
        batches_per_second_max: 64.26476266356143
        batches_per_second_mean: 63.28565696640637
        batches_per_second_min: 51.38378232692614
        batches_per_second_std: 1.9198343850767468
        seconds_per_batch_max: 0.019461393356323242
        seconds_per_batch_mean: 0.01581801414489746
        seconds_per_batch_min: 0.015560626983642578
        seconds_per_batch_std: 0.0005498731526138171
  batch_size_8:
    cpu_to_gpu:
      human_readable:
        batch_latency: "805.674 \xB5s +/- 157.254 \xB5s [773.191 \xB5s, 2.303 ms]"
        batches_per_second: 1.26 K +/- 97.51 [434.24, 1.29 K]
      metrics:
        batches_per_second_max: 1293.3407338883749
        batches_per_second_mean: 1259.5653105357776
        batches_per_second_min: 434.23791282741485
        batches_per_second_std: 97.51424036939879
        seconds_per_batch_max: 0.002302885055541992
        seconds_per_batch_mean: 0.000805673599243164
        seconds_per_batch_min: 0.0007731914520263672
        seconds_per_batch_std: 0.0001572538140613121
    gpu_to_cpu:
      human_readable:
        batch_latency: "104.215 \xB5s +/- 12.658 \xB5s [59.605 \xB5s, 128.031 \xB5\
          s]"
        batches_per_second: 9.81 K +/- 1.76 K [7.81 K, 16.78 K]
      metrics:
        batches_per_second_max: 16777.216
        batches_per_second_mean: 9806.840626578907
        batches_per_second_min: 7810.621973929236
        batches_per_second_std: 1761.6008872740726
        seconds_per_batch_max: 0.00012803077697753906
        seconds_per_batch_mean: 0.00010421514511108399
        seconds_per_batch_min: 5.9604644775390625e-05
        seconds_per_batch_std: 1.2658293070174213e-05
    on_device_inference:
      human_readable:
        batch_latency: "16.623 ms +/- 759.017 \xB5s [16.301 ms, 22.584 ms]"
        batches_per_second: 60.26 +/- 2.22 [44.28, 61.35]
      metrics:
        batches_per_second_max: 61.346243290283894
        batches_per_second_mean: 60.25881046175457
        batches_per_second_min: 44.27827629162004
        batches_per_second_std: 2.2193085956672296
        seconds_per_batch_max: 0.02258443832397461
        seconds_per_batch_mean: 0.01662288188934326
        seconds_per_batch_min: 0.01630091667175293
        seconds_per_batch_std: 0.0007590167680596548
    total:
      human_readable:
        batch_latency: "17.533 ms +/- 836.015 \xB5s [17.193 ms, 23.896 ms]"
        batches_per_second: 57.14 +/- 2.20 [41.85, 58.16]
      metrics:
        batches_per_second_max: 58.16374528511205
        batches_per_second_mean: 57.140338855126565
        batches_per_second_min: 41.84762740950632
        batches_per_second_std: 2.1985066663972677
        seconds_per_batch_max: 0.023896217346191406
        seconds_per_batch_mean: 0.01753277063369751
        seconds_per_batch_min: 0.017192840576171875
        seconds_per_batch_std: 0.0008360147274630088

Limitations

Usage assumptions:

  • The model has as a __call__ method that takes the sample, i.e. model(sample).
  • The Model also works if the sample had a batch size of 1 (first dimension).

Feature limitations:

  • Allocated memory uses torch.cuda.max_memory_allocated, which is only available if the model resides on a CUDA device.
  • Energy consumption can only be measured on NVIDIA Jetson platforms at the moment.

Citation

If you like the tool and use it in you research, please consider citing it:

@article{hedegaard2022torchbenchmark,
  title={PyTorch Benchmark},
  author={Lukas Hedegaard},
  journal={GitHub. Note: https://github.com/LukasHedegaard/pytorch-benchmark},
  year={2022}
}
You might also like...
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

Demo for the paper
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

This is the official repository for evaluation on the NoW Benchmark Dataset. The goal of the NoW benchmark is to introduce a standard evaluation metric to measure the accuracy and robustness of 3D face reconstruction methods from a single image under variations in viewing angle, lighting, and common occlusions.
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Comments
  • torch cuda synchronize on GPUs?

    torch cuda synchronize on GPUs?

    Hello,

    Very happy to see your repo.

    I have tested the code and found that for the GPU tests, there may lack of torch synchronize when computing the device time. I am not sure how this may impact the results but I think it would make difference.

    What do you think?

    Best,

    opened by jizongFox 1
Releases(0.3.5)
Owner
Lukas Hedegaard
PhD Student | AI Researcher | Open Source Contributor
Lukas Hedegaard
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

Resha Dwika Hefni Al-Fahsi 2 Oct 06, 2021
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023