Implements MLP-Mixer: An all-MLP Architecture for Vision.

Overview

MLP-Mixer-CIFAR10

This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (Multi-layer Perceptron) architecture for computer vision tasks. Yannic Kilcher walks through the architecture in this video.

Experiments reported in this repository are on CIFAR-10.

What's included?

  • Distributed training with mixed-precision.
  • Visualization of the token-mixing MLP weights.
  • A TensorBoard callback to keep track of the learned linear projections of the image patches.
Screen.Recording.2021-05-25.at.5.49.20.PM.mov

Notebooks

Note: These notebooks are runnable on Colab. If you don't have access to a tensor-core GPU, please disable the mixed-precision block while running the code.

Results

MLP-Mixer achieves competitive results. The figure below summarizes top-1 accuracies on CIFAR-10 test set with respect to varying MLP blocks.


Notable hyperparameters are:

  • Image size: 72x72
  • Patch size: 9x9
  • Hidden dimension for patches: 64
  • Hidden dimension for patches: 128

The table below reports the parameter counts for the different MLP-Mixer variants:


ResNet20 (0.571969 Million) achieves 78.14% under the exact same training configuration. Refer to this notebook for more details.

Models

You can reproduce the results reported above. The model files are available here.

Acknowledgements

ML-GDE Program for providing GCP credits.

You might also like...
An All-MLP solution for Vision, from Google AI
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Implementation of
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Model search is a framework that implements AutoML algorithms for model architecture search at scale
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model architecture for their classification problems (i.e., DNNs with different types of layers).

A task-agnostic vision-language architecture as a step towards General Purpose Vision
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

MLP-Like Vision Permutator for Visual Recognition (PyTorch)
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

code for paper
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

Implementation of ResMLP, an all MLP solution to image classification, in Pytorch
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions.
Comments
  • Could patches number != MLP token mixing dimension?

    Could patches number != MLP token mixing dimension?

    I try to change the model into B/16 MLP-Mixer. is this setting, the patch number ( sequence length) != MLP token mixing dimension. But the code will report an error when it implements "x = layers.Add()([x, token_mixing])" because the two operation numbers have different shapes. Take an example, B/16 Settings: image 3232, 2D hidden layer 768, PP= 16*16, token mixing mlp dimentsion= 384, channel mlp dimension = 3072. Thus patch number ( sequence length) = 4, table value shape= (4, 768) When the code runs x = layers.Add()([x, token_mixing]) in the token mixing layer. rx shape=[4, 768], token_mixing shape = [384, 768]

    It is strange why the MLP-Mixer paper could set different parameters "patch number ( sequence length) != MLP token mixing dimensio"

    opened by LouiValley 2
  • Why the accuracy drops after epoch 100/100 (accuracy drops from 91% to 71%)

    Why the accuracy drops after epoch 100/100 (accuracy drops from 91% to 71%)

    I trained the Network ( NUM_MIXER_LAYERS =4 )

    At epoch 100:

    Epoch 100/100

    1/44 [..............................] - ETA: 1s - loss: 0.2472 - accuracy: 0.9160 3/44 [=>............................] - ETA: 1s - loss: 0.2424 - accuracy: 0.9162 5/44 [==>...........................] - ETA: 1s - loss: 0.2431 - accuracy: 0.9155 7/44 [===>..........................] - ETA: 1s - loss: 0.2424 - accuracy: 0.9154 9/44 [=====>........................] - ETA: 1s - loss: 0.2419 - accuracy: 0.9155 11/44 [======>.......................] - ETA: 1s - loss: 0.2423 - accuracy: 0.9150 13/44 [=======>......................] - ETA: 1s - loss: 0.2426 - accuracy: 0.9145 15/44 [=========>....................] - ETA: 1s - loss: 0.2430 - accuracy: 0.9142 17/44 [==========>...................] - ETA: 1s - loss: 0.2433 - accuracy: 0.9140 19/44 [===========>..................] - ETA: 1s - loss: 0.2435 - accuracy: 0.9138 21/44 [=============>................] - ETA: 0s - loss: 0.2438 - accuracy: 0.9136 23/44 [==============>...............] - ETA: 0s - loss: 0.2439 - accuracy: 0.9135 25/44 [================>.............] - ETA: 0s - loss: 0.2440 - accuracy: 0.9134 27/44 [=================>............] - ETA: 0s - loss: 0.2440 - accuracy: 0.9133 29/44 [==================>...........] - ETA: 0s - loss: 0.2442 - accuracy: 0.9132 31/44 [====================>.........] - ETA: 0s - loss: 0.2445 - accuracy: 0.9130 33/44 [=====================>........] - ETA: 0s - loss: 0.2447 - accuracy: 0.9129 35/44 [======================>.......] - ETA: 0s - loss: 0.2450 - accuracy: 0.9127 37/44 [========================>.....] - ETA: 0s - loss: 0.2454 - accuracy: 0.9125 39/44 [=========================>....] - ETA: 0s - loss: 0.2459 - accuracy: 0.9123 41/44 [==========================>...] - ETA: 0s - loss: 0.2463 - accuracy: 0.9121 43/44 [============================>.] - ETA: 0s - loss: 0.2469 - accuracy: 0.9119 44/44 [==============================] - 2s 46ms/step - loss: 0.2474 - accuracy: 0.9117 - val_loss: 1.1145 - val_accuracy: 0.7226

    Then it still have an extra training, 1/313 [..............................] - ETA: 24:32 - loss: 0.5860 - accuracy: 0.8125 8/313 [..............................] - ETA: 2s - loss: 1.2071 - accuracy: 0.6953  ..... 313/313 [==============================] - ETA: 0s - loss: 1.0934 - accuracy: 0.7161 313/313 [==============================] - 12s 22ms/step - loss: 1.0934 - accuracy: 0.7161 Test accuracy: 71.61

    opened by LouiValley 1
  • Consider either turning off auto-sharding or switching the auto_shard_policy to DATA

    Consider either turning off auto-sharding or switching the auto_shard_policy to DATA

    Excuse me, when I try to run it on the serve, it tips:

    Consider either turning off auto-sharding or switching the auto_shard_policy to DATA to shard this dataset. You can do this by creating a new tf.data.Options() object then setting options.experimental_distribute.auto_shard_policy = AutoShardPolicy.DATA before applying the options object to the dataset via dataset.with_options(options). 2021-11-21 11:59:20.861052: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.

    BTW, my TensorFlow version is 2.4.0, how to fix this problem?

    opened by LouiValley 1
Releases(Models)
Owner
Sayak Paul
Trying to learn how machines learn.
Sayak Paul
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022
Flexible time series feature extraction & processing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful

PreDiCT.IDLab 206 Dec 28, 2022