Implements MLP-Mixer: An all-MLP Architecture for Vision.

Overview

MLP-Mixer-CIFAR10

This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (Multi-layer Perceptron) architecture for computer vision tasks. Yannic Kilcher walks through the architecture in this video.

Experiments reported in this repository are on CIFAR-10.

What's included?

  • Distributed training with mixed-precision.
  • Visualization of the token-mixing MLP weights.
  • A TensorBoard callback to keep track of the learned linear projections of the image patches.
Screen.Recording.2021-05-25.at.5.49.20.PM.mov

Notebooks

Note: These notebooks are runnable on Colab. If you don't have access to a tensor-core GPU, please disable the mixed-precision block while running the code.

Results

MLP-Mixer achieves competitive results. The figure below summarizes top-1 accuracies on CIFAR-10 test set with respect to varying MLP blocks.


Notable hyperparameters are:

  • Image size: 72x72
  • Patch size: 9x9
  • Hidden dimension for patches: 64
  • Hidden dimension for patches: 128

The table below reports the parameter counts for the different MLP-Mixer variants:


ResNet20 (0.571969 Million) achieves 78.14% under the exact same training configuration. Refer to this notebook for more details.

Models

You can reproduce the results reported above. The model files are available here.

Acknowledgements

ML-GDE Program for providing GCP credits.

You might also like...
An All-MLP solution for Vision, from Google AI
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Implementation of
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Model search is a framework that implements AutoML algorithms for model architecture search at scale
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model architecture for their classification problems (i.e., DNNs with different types of layers).

A task-agnostic vision-language architecture as a step towards General Purpose Vision
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

MLP-Like Vision Permutator for Visual Recognition (PyTorch)
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

code for paper
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

Implementation of ResMLP, an all MLP solution to image classification, in Pytorch
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions.
Comments
  • Could patches number != MLP token mixing dimension?

    Could patches number != MLP token mixing dimension?

    I try to change the model into B/16 MLP-Mixer. is this setting, the patch number ( sequence length) != MLP token mixing dimension. But the code will report an error when it implements "x = layers.Add()([x, token_mixing])" because the two operation numbers have different shapes. Take an example, B/16 Settings: image 3232, 2D hidden layer 768, PP= 16*16, token mixing mlp dimentsion= 384, channel mlp dimension = 3072. Thus patch number ( sequence length) = 4, table value shape= (4, 768) When the code runs x = layers.Add()([x, token_mixing]) in the token mixing layer. rx shape=[4, 768], token_mixing shape = [384, 768]

    It is strange why the MLP-Mixer paper could set different parameters "patch number ( sequence length) != MLP token mixing dimensio"

    opened by LouiValley 2
  • Why the accuracy drops after epoch 100/100 (accuracy drops from 91% to 71%)

    Why the accuracy drops after epoch 100/100 (accuracy drops from 91% to 71%)

    I trained the Network ( NUM_MIXER_LAYERS =4 )

    At epoch 100:

    Epoch 100/100

    1/44 [..............................] - ETA: 1s - loss: 0.2472 - accuracy: 0.9160 3/44 [=>............................] - ETA: 1s - loss: 0.2424 - accuracy: 0.9162 5/44 [==>...........................] - ETA: 1s - loss: 0.2431 - accuracy: 0.9155 7/44 [===>..........................] - ETA: 1s - loss: 0.2424 - accuracy: 0.9154 9/44 [=====>........................] - ETA: 1s - loss: 0.2419 - accuracy: 0.9155 11/44 [======>.......................] - ETA: 1s - loss: 0.2423 - accuracy: 0.9150 13/44 [=======>......................] - ETA: 1s - loss: 0.2426 - accuracy: 0.9145 15/44 [=========>....................] - ETA: 1s - loss: 0.2430 - accuracy: 0.9142 17/44 [==========>...................] - ETA: 1s - loss: 0.2433 - accuracy: 0.9140 19/44 [===========>..................] - ETA: 1s - loss: 0.2435 - accuracy: 0.9138 21/44 [=============>................] - ETA: 0s - loss: 0.2438 - accuracy: 0.9136 23/44 [==============>...............] - ETA: 0s - loss: 0.2439 - accuracy: 0.9135 25/44 [================>.............] - ETA: 0s - loss: 0.2440 - accuracy: 0.9134 27/44 [=================>............] - ETA: 0s - loss: 0.2440 - accuracy: 0.9133 29/44 [==================>...........] - ETA: 0s - loss: 0.2442 - accuracy: 0.9132 31/44 [====================>.........] - ETA: 0s - loss: 0.2445 - accuracy: 0.9130 33/44 [=====================>........] - ETA: 0s - loss: 0.2447 - accuracy: 0.9129 35/44 [======================>.......] - ETA: 0s - loss: 0.2450 - accuracy: 0.9127 37/44 [========================>.....] - ETA: 0s - loss: 0.2454 - accuracy: 0.9125 39/44 [=========================>....] - ETA: 0s - loss: 0.2459 - accuracy: 0.9123 41/44 [==========================>...] - ETA: 0s - loss: 0.2463 - accuracy: 0.9121 43/44 [============================>.] - ETA: 0s - loss: 0.2469 - accuracy: 0.9119 44/44 [==============================] - 2s 46ms/step - loss: 0.2474 - accuracy: 0.9117 - val_loss: 1.1145 - val_accuracy: 0.7226

    Then it still have an extra training, 1/313 [..............................] - ETA: 24:32 - loss: 0.5860 - accuracy: 0.8125 8/313 [..............................] - ETA: 2s - loss: 1.2071 - accuracy: 0.6953  ..... 313/313 [==============================] - ETA: 0s - loss: 1.0934 - accuracy: 0.7161 313/313 [==============================] - 12s 22ms/step - loss: 1.0934 - accuracy: 0.7161 Test accuracy: 71.61

    opened by LouiValley 1
  • Consider either turning off auto-sharding or switching the auto_shard_policy to DATA

    Consider either turning off auto-sharding or switching the auto_shard_policy to DATA

    Excuse me, when I try to run it on the serve, it tips:

    Consider either turning off auto-sharding or switching the auto_shard_policy to DATA to shard this dataset. You can do this by creating a new tf.data.Options() object then setting options.experimental_distribute.auto_shard_policy = AutoShardPolicy.DATA before applying the options object to the dataset via dataset.with_options(options). 2021-11-21 11:59:20.861052: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.

    BTW, my TensorFlow version is 2.4.0, how to fix this problem?

    opened by LouiValley 1
Releases(Models)
Owner
Sayak Paul
Trying to learn how machines learn.
Sayak Paul
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️

GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et

Aleksa Gordić 1.9k Jan 09, 2023
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
Realistic lighting in ursina!

Ursina Lighting Realistic lighting in ursina! If you want to have realistic lighting in ursina, import the UrsinaLighting.py in your project and use t

17 Jul 07, 2022
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022