The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

Overview

Intermdiate layer matters - SSL

The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

  1. Download the data for the experiments:

The data can be downloaded from kaggle.com. NIH chest-xray dataset: https://www.kaggle.com/nih-chest-xrays/data Breast cancer histopathology dataset: https://www.kaggle.com/paultimothymooney/breast-histopathology-images Diabetic Retinopathy dataset: https://www.kaggle.com/c/diabetic-retinopathy-detection/data

  1. Training of SSL models:

To train the ssl models for moco, moco-mse and moco-btwins, please use 'train_ssl_moco.py', 'train_ssl_moco_mse.py' and 'train_ssl_moco_btwins.py' respectively. The code works for first two datasets. For the diabetic retinopathy dataset, please write a dataloader like "chest_xray_supervised.py" and a datamodule file like "chest_xray_dm.py". Import these files in 'train_ssl_moco.py', 'train_ssl_moco_mse.py' and 'train_ssl_moco_btwins.py' and make necesary changes. The same code can work for the diabetic retinopathy dataset.

  1. Fine tuning the models:

To finetune the models, please use the "fine_tune_moco_chestxray.py" and "fine_tune_moco_hist.py" for NIH chest xray and Breast cancer histopathology data, respectively. For the diabetic retinopathy dataset, please write the code for fine tuning using/similar to "fine_tune_moco_chestxray.py"

  1. Probing the models:

To probe the intermediate layers of the model, please use the "probing_moco_chestxray.py" and "probing_moco_hist.py" for NIH chest xray and Breast cancer histopathology data, respectively. For the diabetic retinopathy dataset, please write the code for probing the intermediate layers using/similar to "probing_moco_chestxray.py"

  1. Feature reuse analysis:

To compute the feature similarity, perform the inference using your model, store the intermediate layer representations and use "CKA.py" for computing the kernel similarity with sigma = 0.8.

Owner
Aakash Kaku
Enthusiast of using Deep Learning in Medicine and Machine Learning in Finance and Marketing. Master of Business Administration and Data Sciences
Aakash Kaku
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022