The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

Overview

Intermdiate layer matters - SSL

The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

  1. Download the data for the experiments:

The data can be downloaded from kaggle.com. NIH chest-xray dataset: https://www.kaggle.com/nih-chest-xrays/data Breast cancer histopathology dataset: https://www.kaggle.com/paultimothymooney/breast-histopathology-images Diabetic Retinopathy dataset: https://www.kaggle.com/c/diabetic-retinopathy-detection/data

  1. Training of SSL models:

To train the ssl models for moco, moco-mse and moco-btwins, please use 'train_ssl_moco.py', 'train_ssl_moco_mse.py' and 'train_ssl_moco_btwins.py' respectively. The code works for first two datasets. For the diabetic retinopathy dataset, please write a dataloader like "chest_xray_supervised.py" and a datamodule file like "chest_xray_dm.py". Import these files in 'train_ssl_moco.py', 'train_ssl_moco_mse.py' and 'train_ssl_moco_btwins.py' and make necesary changes. The same code can work for the diabetic retinopathy dataset.

  1. Fine tuning the models:

To finetune the models, please use the "fine_tune_moco_chestxray.py" and "fine_tune_moco_hist.py" for NIH chest xray and Breast cancer histopathology data, respectively. For the diabetic retinopathy dataset, please write the code for fine tuning using/similar to "fine_tune_moco_chestxray.py"

  1. Probing the models:

To probe the intermediate layers of the model, please use the "probing_moco_chestxray.py" and "probing_moco_hist.py" for NIH chest xray and Breast cancer histopathology data, respectively. For the diabetic retinopathy dataset, please write the code for probing the intermediate layers using/similar to "probing_moco_chestxray.py"

  1. Feature reuse analysis:

To compute the feature similarity, perform the inference using your model, store the intermediate layer representations and use "CKA.py" for computing the kernel similarity with sigma = 0.8.

Owner
Aakash Kaku
Enthusiast of using Deep Learning in Medicine and Machine Learning in Finance and Marketing. Master of Business Administration and Data Sciences
Aakash Kaku
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
License Plate Detection Application

LicensePlate_Project ๐Ÿš— ๐Ÿš™ [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ๋ผ๋ฒจ๋ง ์ฐจ๋Ÿ‰ ๋ฒˆํ˜ธํŒ ์ด๋ฏธ์ง€๋ฅผ ์ง์ ‘ ์ˆ˜์ง‘ํ•˜์—ฌ ๊ฐ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด '๋ฒˆํ˜ธํŒ

4 Oct 10, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) ๐Ÿง ๐Ÿ‘จ๐Ÿฝโ€๐Ÿ’ป What? ๐Ÿ’ป This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Fellowship Prediction GitHub Profile Comparative Analysis Tool Built with BentoML Table of Contents: Features Disclaimer Technologies Used Contributin

Damir Temir 51 Dec 29, 2022
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. ๆœฌ้กน็›ฎๅŸบไบŽ https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022