Self-Supervised Methods for Noise-Removal

Related tags

Deep LearningSSMNR
Overview

SSMNR | Self-Supervised Methods for Noise Removal

Image denoising is the task of removing noise from an image, which can be formulated as the task of separating the noise signal from the meaningful information in images. Traditionally, this has been addressed both by spatial domain methods and transfer domain methods. However, from around 2016 onwards, image denoising techniques based on neural networks have started to outperfom these methods, with CNN-based denoisers obtaining impressive results.

One limitation to the use of neural-network based denoisers in many applications is the need for extensive, labeled datasets containing both noised images, and ground-truth, noiseless images. In answer to this, multiple works have explored the use of semi-supervised approaches for noise removal, requiring either noised image pairs but no clean target images (Noise2Noise) or, more recently, no additional data than the noised image (Noise2Void). This project aims at studying these approaches for the task of noise removal, and re-implementing them in PyTorch.

This repository contains our code for this task. This code is heavily based on both the original implementation of the Noise2Void article available here, on other implementations and PyTorch/TensorFlow reproducibility challenges here and here, on the U-NET Transformer architecture available here, as well as some base code from our teachers for a project on bird species recognition.

Data

Data used to train and evaluate the algorithm consists mostly in:

No noiseless data was used to train the models.

Usage

To reproduce these results, please start by cloning the repository locally:

git clone https://github.com/bglbrt/SSMNR.git

Then, install the required libraries:

pip install -r requirements.txt

Denoising images (with provided, pre-trained weights)

To denoise an image or multiple images from a specified directory, run:

python main.py --mode denoise --model "model" --images_path "path/to/image/or/dir" --weights "path/to/model/weights"

Provided pre-trained weights are formatted as: "models/model_"+model_name+_+noise_type+sigma+".pth".

Available weights are:

  • weights for the N2V model:
    • models/model_N2V_G5.pth
    • models/model_N2V_G10.pth
    • models/model_N2V_G15.pth
    • models/model_N2V_G25.pth
    • models/model_N2V_G35.pth
    • models/model_N2V_G50.pth
  • weights for the N2VT (N2V with U-NET Transformer) model:
    • models/model_N2V_G5.pth (please contact us to obtain weights)
    • models/model_N2V_G10.pth (please contact us to obtain weights)
    • models/model_N2V_G25.pth (please contact us to obtain weights)

Options available for denoising are:

  • --mode: Training (train), denoising (denoise) or evaluation (eval) mode
    • default: train
  • --images_path: Path to image or directory of images to denoise.
    • default: None
  • --model: Name of model for noise removal
    • default: N2V
  • --n_channels: Number of channels in images - i.e. RGB or Grayscale images
    • default: 3
  • --weights: Path to weights to use for denoising, evaluation, or fine-tuning when training.
    • default: None
  • --slide: Sliding window size for denoising and evaluation
    • default: 32
  • --use_cuda: Use of GPU or CPU
    • default: 32

Evaluation

To evaluate a model using a dataset in a specified directory, run:

python main.py --mode eval --model "model" --images_path "path/to/image/or/dir" --weights "path/to/model/weights"

Note that the data located at path/to/image/or/dir must include a folder named original with noiseless images.

Evaluation methods include:

  • N2V (Noise2Void with trained weights)
  • N2VT (Noise2VoidTransformer with trained weights)
  • BM3D (Block-Matching and 3D Filtering)
  • MEAN (5x5 mean filter)
  • MEDIAN (5x5 median filter)

Provided pre-trained weights for N2V and N2VT are formatted as: "models/model_"+model_name+_+noise_type+sigma+".pth".

Available weights are:

  • weights for the N2V model:
    • models/model_N2V_G5.pth
    • models/model_N2V_G10.pth
    • models/model_N2V_G15.pth
    • models/model_N2V_G25.pth
    • models/model_N2V_G35.pth
    • models/model_N2V_G50.pth
  • weights for the N2VT (N2V with U-NET Transformer) model:
    • models/model_N2V_G5.pth
    • models/model_N2V_G10.pth
    • models/model_N2V_G25.pth

Options available for evaluation are:

  • --mode: Training (train), denoising (denoise) or evaluation (eval) mode
    • default: train
  • --images_path: Path to image or directory of images to evaluate.
    • default: None
  • --model: Name of model for noise removal
    • default: N2V
  • --n_channels: Number of channels in images - i.e. RGB or Grayscale images
    • default: 3
  • --weights: Path to weights to use for denoising, evaluation, or fine-tuning when training.
    • default: None
  • --slide: Sliding window size for denoising and evaluation
    • default: 32
  • --use_cuda: Use of GPU or CPU
    • default: 32

Training

To train weights for the N2V and N2VT models using data located in the data folder, run:

python main.py data "data" --model "N2V" --mode train"

Note that the data folder must contain two folders named train and validation.

Options available for training are:

  • --data: Folder where training and testing data is located.
    • default: data
  • --mode: Training (train), denoising (denoise) or evaluation (eval) mode
    • default: train
  • --model: Name of model for noise removal.
    • default: N2V
  • --n_channels: Number of channels in images - i.e. RGB or Grayscale images
    • default: 3
  • --input_size: Model patches input size
    • default: 64
  • --masking_method: Blind-spot masking method
    • default: UPS
  • --window: Window for blind-spot masking method in UPS
    • default: 5
  • --n_feat: Number of feature maps of the first convolutional layer
    • default: 96
  • --noise_type: Noise type from Gaussian (G), Poisson (P) and Impulse (I)
    • default: G
  • --ratio: Ratio for number of blind-spot pixels in patch
    • default: 1/64
  • --from_pretrained: Train model from pre-trained weights
    • default: False
  • --weights: Path to weights to use for denoising, evaluation, or fine-tuning when training
    • default: None
  • --weights_init_method: Weights initialization method
    • default: kaiming
  • --loss: Loss function for training
    • default: L2
  • --batch_size: Batch size for training data
    • default: 64
  • --epochs: Number of epochs to train the model.
    • default: 300
  • --steps_per_epoch: Number of steps per epoch for training
    • default: 100
  • --sigma: Noise parameter for creating labels - depends on distribution
    • default: 25
  • --lr: Learning rate
    • default: 4e-4
  • --wd: Weight decay for RAdam optimiser
    • default: 1e-4
  • --use_cuda: Use of GPU or CPU
    • default: 32
  • --seed: Random seed
    • default: 1

Required libraries

The files present on this repository require the following libraries (also listed in requirements.txt):

Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022