SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

Overview

SSL_SLAM2

Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example)

This repo is an extension work of SSL_SLAM. Similar to RTABMAP, SSL_SLAM2 separates the mapping module and localization module. Map saving and map optimization is enabled in the mapping unit. Map loading and localization is enabled in the localziation unit.

This code is an implementation of paper "Lightweight 3-D Localization and Mapping for Solid-State LiDAR", published in IEEE Robotics and Automation Letters, 2021 paper

A summary video demo can be found at Video

Modifier: Wang Han, Nanyang Technological University, Singapore

Running speed: 20 Hz on Intel NUC, 30 Hz on PC

1. Solid-State Lidar Sensor Example

1.1 Scene reconstruction example

1.2 Localization with built map

1.3 Comparison

2. Prerequisites

2.1 Ubuntu and ROS

Ubuntu 64-bit 18.04.

ROS Melodic. ROS Installation

2.2. Ceres Solver

Follow Ceres Installation.

2.3. PCL

Follow PCL Installation.

Tested with 1.8.1

2.4. GTSAM

Follow GTSAM Installation.

2.5. Trajectory visualization

For visualization purpose, this package uses hector trajectory sever, you may install the package by

sudo apt-get install ros-melodic-hector-trajectory-server

Alternatively, you may remove the hector trajectory server node if trajectory visualization is not needed

3. Sensor Setup

If you have new Realsense L515 sensor, you may follow the below setup instructions

3.1 L515

3.2 Librealsense

Follow Librealsense Installation

3.3 Realsense_ros

Copy realsense_ros package to your catkin folder

    cd ~/catkin_ws/src
    git clone https://github.com/IntelRealSense/realsense-ros.git
    cd ..
    catkin_make

4. Build SSL_SLAM2

4.1 Clone repository:

    cd ~/catkin_ws/src
    git clone https://github.com/wh200720041/ssl_slam2.git
    cd ..
    catkin_make
    source ~/catkin_ws/devel/setup.bash

4.2 Download test rosbag

You may download our recorded data: MappingTest.bag (3G) and LocalizationTest.bag (6G)if you dont have realsense L515, and by defult the file should be under home/user/Downloads

unzip the file (it may take a while to unzip)

cd ~/Downloads
unzip LocalizationTest.zip
unzip MappingTest.zip

4.3 Map Building

map optimization and building

    roslaunch ssl_slam2 ssl_slam2_mapping.launch

The map optimization is performed based on loop closure, you have to specify the loop clousre manually in order to trigger global optimization. To save map, open a new terminal and

  rosservice call /save_map

Upon calling the serviece, the map will be automatically saved. It is recommended to have a loop closure to reduce the drifts. Once the service is called, loop closure will be checked. For example, in the rosbag provided, the loop closure appears at frame 1060-1120, thus, when you see "total_frame 1070" or "total_frame 1110" you may immediately type

  rosservice call /save_map

Since the current frame is between 1060 and 1120, the loop closure will be triggered automatically and the global map will be optimized and saved

4.4 Localization

Type

    roslaunch ssl_slam2 ssl_slam2_localization.launch

If your map is large, it may takes a while to load

4.5 Parameters Explanation

The map size depends on number of keyframes used. The more keyframes used for map buildin, the larger map will be.

min_map_update_distance: distance threshold to add a keyframe. higher means lower update rate. min_map_update_angle: angle threshold to add a keyframe. higher means lower update rate. min_map_update_frame: time threshold to add a keyframe. higher means lower update rate.

4.6 Relocalization

The relocalization module under tracking loss is still under development. You must specify the robot init pose w.r.t. the map coordinate if the starting position is not the origin of map. You can set this by

    <param name="offset_x" type="double" value="0.0" />
    <param name="offset_y" type="double" value="0.0" />
    <param name="offset_yaw" type="double" value="0.0" />

4.7 Running speed

The realsense is running at 30Hz and some computer may not be able to support such high processing rate. You may reduce the processing rate by skipping frames. You can do thid by setting the

<param name="skip_frames" type="int" value="1" />

1 implies no skip frames, i.e., 30Hz; implies skip 1 frames, i.e., 15Hz. For small map building, you can do it online. however, it is recommended to record a rosbag and build map offline for large mapping since the dense map cannot be generated in real-time.

5 Map Building with multiple loop closure places

5.1 Dataset

You may download a larger dataset LargeMappingTest.bag (10G), and by defult the file should be under home/user/Downloads

unzip the file (it may take a while to unzip)

cd ~/Downloads
unzip LargeMappingTest.zip

5.2 Map Building

Two loop closure places appear at frame 0-1260 and 1270-3630, i.e., frame 0 and frame 1260 are the same place, frame 1270 adn 3630 are the same place. Run

    roslaunch ssl_slam2 ssl_slam2_large_mapping.launch

open a new terminal, when you see "total_frame 1260", immediately type

  rosservice call /save_map

when you see "total_frame 3630", immediately type again

  rosservice call /save_map

6. Citation

If you use this work for your research, you may want to cite the paper below, your citation will be appreciated

@article{wang2021lightweight,
  author={H. {Wang} and C. {Wang} and L. {Xie}},
  journal={IEEE Robotics and Automation Letters}, 
  title={Lightweight 3-D Localization and Mapping for Solid-State LiDAR}, 
  year={2021},
  volume={6},
  number={2},
  pages={1801-1807},
  doi={10.1109/LRA.2021.3060392}}
Owner
Wang Han 王晗
I am currently a Phd Candidate at Nanyang Technological University, Singapore, specialize in computer vision and robotics
Wang Han 王晗
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022