Tools for robust generative diffeomorphic slice to volume reconstruction

Related tags

Deep LearningRGDSVR
Overview

RGDSVR

Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR)

This repository provides tools to implement the methods in the manuscript ''Fetal MRI by robust deep generative prior reconstruction and diffeomorphic registration: application to gestational age prediction'', L Cordero-Grande, JE Ortuño-Fisac, A Uus, M Deprez, A Santos, JV Hajnal, and MJ Ledesma-Carbayo, arXiv, 2021.

The code has been developed in MATLAB and has the following structure:

./

contains a script to run a reconstruction of the provided example data: rgdsvr_example.m and another to import the Python code loadPythonDeepFetal.m.

./SVR

contains files to perform SVR reconstructions: svrAlternateMinimization.m, svrCG.m, svrDD.m, svrDecode.m, svrEncode.m, svrExcitationStructures.m, svrRearrangeAxes.m, svrSetUp.m, svrSliceWeights.m, svrSolveDPack.m, svrSolveDVolu.m, svrSolveTVolu.m.

./SVR/Common

contains common functions used by SVR methods: computeDeformableTransforms.m, finalizeConvergenceControl.m, initializeConvergenceControl.m, initializeDEstimation.m, modulateGradient.m, prepareLineSearch.m, updateRule.m.

./Alignment

contains functions for registration.

./Alignment/Elastic

contains functions for elastic registration: adAdjointOperator.m, adDualOperator.m, buildDifferentialOperator.m, buildGradientOperator.m, buildMapSpace.m, computeGradientHessianElastic.m, computeJacobian.m, computeRiemannianMetric.m, deformationGradientTensor.m, deformationGradientTensorSpace.m, elasticTransform.m, geodesicShooting.m, integrateReducedAdjointJacobi.m, integrateVelocityFields.m, invertElasticTransform.m, mapSpace.m, precomputeFactorsElasticTransform.m.

./Alignment/Metrics

contains functions for metrics used in registration: computeMetricDerivativeHessianRigid.m, metricFiltering.m, metricMasking.m, msdMetric.m.

./Alignment/Rigid

contains functions for rigid registration: convertRotation.m, factorizeHomogeneousMatrix.m, generatePrincipalAxesRotations.m, generateTransformGrids.m, jacobianQuaternionEuler.m, jacobianShearQuaternion.m, mapVolume.m, modifyGeometryROI.m, precomputeFactorsSincRigidTransformQuick.m, quaternionToShear.m, restrictTransform.m, rotationDistance.m, shearQuaternion.m, sincRigidTransformGradientQuick.m, sincRigidTransformQuick.m.

./Build

contains functions that replace, extend or adapt some MATLAB built-in functions: aplGPU.m, det2x2m.m, det3x3m.m, diagm.m, dynInd.m, eigm.m, eultorotm.m, gridv.m, ind2subV.m, indDim.m, matfun.m, multDimMax.m, multDimMin.m, multDimSum.m, numDims.m, parUnaFun.m, quattoeul.m, resPop.m, resSub.m, rotmtoquat.m, sub2indV.m, svdm.m.

./Control

contains functions to control the implementation and parameters of the algorithm: channelsDeepDecoder.m, parametersDeepDecoder.m, svrAlgorithm.m, useGPU.m.

./Methods

contains functions that implement generic methods for reconstruction: build1DCTM.m, build1DFTM.m, buildFilter.m, buildStandardDCTM.m, buildStandardDFTM.m, computeROI.m, extractROI.m, fctGPU.m, fftGPU.m, filtering.m, fold.m, generateGrid.m, ifctGPU.m, ifftGPU.m, ifold.m, mirroring.m, resampling.m.

./Python/deepfetal/deepfetal

contains python methods.

./Python/deepfetal/deepfetal/arch

contains python methods to build deep architectures: deepdecoder.py.

./Python/deepfetal/deepfetal/build

contains python methods with generic functions: bmul.py, complex.py, dynind.py, matcharrays.py, shift.py.

./Python/deepfetal/deepfetal/lay

contains python methods to build deep layers: encode.py, resample.py, sinc.py, sine.py, swish.py, tanh.py.

./Python/deepfetal/deepfetal/meth

contains python methods with generic deep methodologies: apl.py, resampling.py, tmtx.py, t.py.

./Python/deepfetal/deepfetal/opt

contains python methods for optimization: cost.py, fit.py.

./Python/deepfetal/deepfetal/unit

contains python methods to build deep units: atac.py decoder.py.

./Tools

contains auxiliary tools: findString.m, removeExtension.m, writenii.m.

./Tools/NIfTI_20140122

from https://uk.mathworks.com/matlabcentral/fileexchange/8797-tools-for-nifti-and-analyze-image

NOTE 1: Example data provided in the dataset svr_inp_034.mat. For runs without changing the paths, it should be placed in folder

../RGDSVR-Data

Data generated when running the example script appears in this folder with names svr_out_034.mat and x_034.mat.

NOTE 2: Instructions for linking the python code in loadPythonDeepFetal.m.

NOTE 3: pathAnaconda variable in rgdsvr_example.m needs to point to parent of python environment.

NOTE 4: Example reconstruction takes about half an hour in a system equipped with a GPU NVIDIA GeForce RTX 3090.

You might also like...
Bayesian Image Reconstruction using Deep Generative Models
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

Adversarial-Information-Bottleneck - Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck (NeurIPS21) NR-GAN: Noise Robust Generative Adversarial Networks
NR-GAN: Noise Robust Generative Adversarial Networks

NR-GAN: Noise Robust Generative Adversarial Networks (CVPR 2020) This repository provides PyTorch implementation for noise robust GAN (NR-GAN). NR-GAN

Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Hand Gesture Volume Control | Open CV | Computer Vision
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Comments
  • Run the algorithm when the slice order is unknown

    Run the algorithm when the slice order is unknown

    Hi, thanks for sharing the code. I wonder if it is possible to use the algorithm when the slice order is unknown, i.e., svr.ParZ.SlOr is unknown. I tried to set svr.ParZ.SlOr to an empty array, but got the following error: Inappropriate slice order identified, SKIPPING. Is there a solution to this problem?

    opened by daviddmc 0
Owner
Lucilio Cordero-Grande
Lucilio Cordero-Grande
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022