NR-GAN: Noise Robust Generative Adversarial Networks

Related tags

Deep LearningNR-GAN
Overview

NR-GAN: Noise Robust Generative Adversarial Networks (CVPR 2020)

This repository provides PyTorch implementation for noise robust GAN (NR-GAN). NR-GAN is unique in that it can learn a clean image generator even when only noisy images are available for training.

NR-GAN examples

Note: In our previous studies, we have also proposed GANs for label noise. Please check them from the links below.

Paper

Noise Robust Generative Adversarial Networks. Takuhiro Kaneko and Tatsuya Harada. In CVPR, 2020.

[Paper] [Project] [Slides] [Video]

Installation

Clone this repo:

git clone https://github.com/takuhirok/NR-GAN.git
cd NR-GAN/

First, install Python 3+. Then install PyTorch 1.3 and other dependencies by the following:

pip install -r requirements.txt

Training

To train a model, use the following script:

bash ./scripts/train.sh [dataset] [model] [output_directory_path]

Example

To train SI-NR-GAN-I (sinrgan1) on CIFAR-10 with additive Gaussian noise with a fixed standard deviation (cifar10ag25), run the following:

bash ./scripts/train.sh cifar10ag25 sinrgan1 outputs

The results are saved into outputs.

Note: In our experiments, we report the best model encountered during training to mitigate the performance fluctuation caused by GAN training instability.

Options

Regarding [dataset], choose one option among the following:

  • cifar10: No noise
  • cifar10ag25: (A) Additive Gaussian noise with a fixed standard deviation
  • cifar10ag5-50: (B) Additive Gaussian noise with a variable standard deviation
  • cifar10lg25p16: (C) Local Gaussian noise with a fixed-size patch
  • cifar10lg25p8-24: (D) Local Gaussian noise with a variable-size patch
  • cifar10u50: (E) Uniform noise
  • cifar10mix: (F) Mixture noise
  • cifar10bg25k5: (G) Brown Gaussian noise
  • cifar10abg25k5: (H) Sum of (A) and (G)
  • cifar10mg25: (I) Multiplicative Gaussian noise with a fixed standard deviation
  • cifar10mg5-50: (J) Multiplicative Gaussian noise with a variable standard deviation
  • cifar10amg5_25: (K) Sum of few (A) and (I)
  • cifar10amg25_25: (L) Sum of much (A) and (I)
  • cifar10p30: (M) Poisson noise with a fixed total number of events
  • cifar10p10-50: (N) Poisson noise with a variable total number of events
  • cifar10pg30_5: (O) Sum of (M) and few (A)
  • cifar10pg30_25: (P) Sum of (M) and much (A)

Noise examples

Regarding [model], choose one option among the following:

  • gan: GAN
  • ambientgan: AmbientGAN
  • sinrgan1: SI-NR-GAN-I
  • sinrgan2: SI-NR-GAN-II
  • sdnrgan1: SD-NR-GAN-I
  • sdnrgan2: SD-NR-GAN-II
  • sdnrgan3: SD-NR-GAN-III

Examples of generated images

CIFAR-10 with additive Gaussian noise

cifar10ag25: (A) Additive Gaussian noise with a fixed standard deviation

Examples of generated images on CIFAR-10 with additive Gaussian noise

AmbientGAN is trained with the ground-truth noise model, while the other models are trained without full knowledge of the noise (i.e., the noise distribution type and noise amount).

CIFAR-10 with multiplicative Gaussian noise

cifar10mg25: (I) Multiplicative Gaussian noise with a fixed standard deviation

Examples of generated images on CIFAR-10 with multiplicative Gaussian noise

AmbientGAN is trained with the ground-truth noise model, while the other models are trained without full knowledge of the noise (i.e., the noise distribution type, noise amount, and signal-noise relationship).

Citation

If you find this work useful for your research, please cite our paper.

@inproceedings{kaneko2020NR-GAN,
  title={Noise Robust Generative Adversarial Networks},
  author={Kaneko, Takuhiro and Harada, Tatsuya},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2020}
}

Related work

  1. A. Bora, E. Price, A. G. Dimakis. AmbientGAN: Generative Models from Lossy Measurements. In ICLR, 2018.
  2. T. Kaneko, Y. Ushiku, T. Harada. Label-Noise Robust Generative Adversarial Networks. In CVPR, 2019.
  3. T. Kaneko, Y. Ushiku, T. Harada. Class-Distinct and Class-Mutual Image Generation with GANs. In BMVC, 2019.
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❤️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022