NR-GAN: Noise Robust Generative Adversarial Networks

Related tags

Deep LearningNR-GAN
Overview

NR-GAN: Noise Robust Generative Adversarial Networks (CVPR 2020)

This repository provides PyTorch implementation for noise robust GAN (NR-GAN). NR-GAN is unique in that it can learn a clean image generator even when only noisy images are available for training.

NR-GAN examples

Note: In our previous studies, we have also proposed GANs for label noise. Please check them from the links below.

Paper

Noise Robust Generative Adversarial Networks. Takuhiro Kaneko and Tatsuya Harada. In CVPR, 2020.

[Paper] [Project] [Slides] [Video]

Installation

Clone this repo:

git clone https://github.com/takuhirok/NR-GAN.git
cd NR-GAN/

First, install Python 3+. Then install PyTorch 1.3 and other dependencies by the following:

pip install -r requirements.txt

Training

To train a model, use the following script:

bash ./scripts/train.sh [dataset] [model] [output_directory_path]

Example

To train SI-NR-GAN-I (sinrgan1) on CIFAR-10 with additive Gaussian noise with a fixed standard deviation (cifar10ag25), run the following:

bash ./scripts/train.sh cifar10ag25 sinrgan1 outputs

The results are saved into outputs.

Note: In our experiments, we report the best model encountered during training to mitigate the performance fluctuation caused by GAN training instability.

Options

Regarding [dataset], choose one option among the following:

  • cifar10: No noise
  • cifar10ag25: (A) Additive Gaussian noise with a fixed standard deviation
  • cifar10ag5-50: (B) Additive Gaussian noise with a variable standard deviation
  • cifar10lg25p16: (C) Local Gaussian noise with a fixed-size patch
  • cifar10lg25p8-24: (D) Local Gaussian noise with a variable-size patch
  • cifar10u50: (E) Uniform noise
  • cifar10mix: (F) Mixture noise
  • cifar10bg25k5: (G) Brown Gaussian noise
  • cifar10abg25k5: (H) Sum of (A) and (G)
  • cifar10mg25: (I) Multiplicative Gaussian noise with a fixed standard deviation
  • cifar10mg5-50: (J) Multiplicative Gaussian noise with a variable standard deviation
  • cifar10amg5_25: (K) Sum of few (A) and (I)
  • cifar10amg25_25: (L) Sum of much (A) and (I)
  • cifar10p30: (M) Poisson noise with a fixed total number of events
  • cifar10p10-50: (N) Poisson noise with a variable total number of events
  • cifar10pg30_5: (O) Sum of (M) and few (A)
  • cifar10pg30_25: (P) Sum of (M) and much (A)

Noise examples

Regarding [model], choose one option among the following:

  • gan: GAN
  • ambientgan: AmbientGAN
  • sinrgan1: SI-NR-GAN-I
  • sinrgan2: SI-NR-GAN-II
  • sdnrgan1: SD-NR-GAN-I
  • sdnrgan2: SD-NR-GAN-II
  • sdnrgan3: SD-NR-GAN-III

Examples of generated images

CIFAR-10 with additive Gaussian noise

cifar10ag25: (A) Additive Gaussian noise with a fixed standard deviation

Examples of generated images on CIFAR-10 with additive Gaussian noise

AmbientGAN is trained with the ground-truth noise model, while the other models are trained without full knowledge of the noise (i.e., the noise distribution type and noise amount).

CIFAR-10 with multiplicative Gaussian noise

cifar10mg25: (I) Multiplicative Gaussian noise with a fixed standard deviation

Examples of generated images on CIFAR-10 with multiplicative Gaussian noise

AmbientGAN is trained with the ground-truth noise model, while the other models are trained without full knowledge of the noise (i.e., the noise distribution type, noise amount, and signal-noise relationship).

Citation

If you find this work useful for your research, please cite our paper.

@inproceedings{kaneko2020NR-GAN,
  title={Noise Robust Generative Adversarial Networks},
  author={Kaneko, Takuhiro and Harada, Tatsuya},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2020}
}

Related work

  1. A. Bora, E. Price, A. G. Dimakis. AmbientGAN: Generative Models from Lossy Measurements. In ICLR, 2018.
  2. T. Kaneko, Y. Ushiku, T. Harada. Label-Noise Robust Generative Adversarial Networks. In CVPR, 2019.
  3. T. Kaneko, Y. Ushiku, T. Harada. Class-Distinct and Class-Mutual Image Generation with GANs. In BMVC, 2019.
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

2 Dec 22, 2021
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022