KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

Related tags

Deep LearningKIND
Overview

KIND (Kessler Italian Named-entities Dataset)

KIND is an Italian dataset for Named-Entity Recognition.

It contains more than one million tokens with the annotation covering three classes: persons, locations, and organizations. Most of the dataset (around 600K tokens) contains manual gold annotations in three different domains: news, literature, and political discourses.

For the construction of the dataset, we decide to use texts available for free, under a license that permits both research and commercial use.

In particular we release four chapters with texts taken from: (i) Wikinews (WN) as a source of news texts belonging to the last decades; (ii) some Italian fiction books (FIC) whose authors died more than 70 years ago; (iii) writings and speeches from Italian politicians Aldo Moro (AM) and (iv) Alcide De Gasperi (ADG).

Wikinews

Wikinews is a multi-language free project of collaborative journalism. The Italian chapter contains more than 11,000 news articles, released under the Creative Commons Attribution 2.5 License.

In building KIND, we randomly choose 1,000 articles evenly distributed in the last 20 years, for a total of 308,622 tokens.

Literature

Regarding fiction literature, we annotate 86 book chapters taken from 10 books written by Italian authors, who all died more than 70 years ago, for a total of 192,448 tokens. The plain texts are taken from the Liber Liber website.

In particular, we choose: Il giorno delle Mésules (Ettore Castiglioni, 12,853 tokens), L'amante di Cesare (Augusto De Angelis, 13,464 tokens), Canne al vento (Grazia Deledda, 13,945 tokens), 1861-1911 - Cinquant’anni di vita nazionale ricordati ai fanciulli (Guido Fabiani, 10,801 tokens), Lettere dal carcere (Antonio Gramsci, 10,655), Anarchismo e democrazia (Errico Malatesta, 11,557 tokens), L'amore negato (Maria Messina, 31,115 tokens), La luna e i falò (Cesare Pavese, 10,705 tokens), La coscienza di Zeno (Italo Svevo, 56,364 tokens), Le cose piu grandi di lui (Luciano Zuccoli, 20,989 tokens).

In selecting works without copyright, we favored texts as recent as possible, so that the model trained on this data can be used efficiently on novels written in the last years, since the language used in these novels is more likely to be similar to the language used in the novels of our days.

Aldo Moro's Works

Writings belonging to Aldo Moro have recently been collected by the University of Bologna and published on a platform called Edizione Nazionale delle Opere di Aldo Moro.

The project is still ongoing and, by now, it contains 806 documents for a total of about one million tokens.

In the first release of KIND, we include 392,604 tokens from the Aldo Moro's works dataset, with silver annotations (see the reference below).

Alcide De Gasperi's Writings

Finally, we annotate 158 document (150,632 tokens) from Alcide Digitale, spanning 50 years of European history.

The complete corpus contains a comprehensive collection of Alcide De Gasperi’s public documents, 2,762 in total, written or transcribed between 1901 and 1954.

License

The NER annotations in (i), (ii), and (iii) are released under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. Annotation from Alcide De Gasperi's writings are released under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

Owner
Digital Humanities
Digital Humanities Unit at Fondazione Bruno Kessler
Digital Humanities
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

119 Dec 04, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023