source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Overview

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge"

Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahuja, "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge," The 25th International Conference on Artificial Intelligence and Statistics (AISTATS), 2022

Contact: [email protected]

Arxiv: https://arxiv.org/pdf/2106.11560.pdf

Dependencies:

In order to successfully execute the code, the following libraries must be installed:

  1. Python --- causallib, sklearn, multiprocessing, contextlib, scipy, functools, pandas, numpy, itertools, random, argparse, time, matplotlib, pickle, pyreadr, rpy2, torch

  2. R --- RCIT

Command inputs:

  • nr: number of repetitions (default = 100)
  • no: number of observations (default = 50000)
  • use_t_in_e: indicator for whether t should be used to generate e (default = 1)
  • ne: number of environments (default = 3)
  • number_IRM_iterations - number of iterations of IRM (default = 15000)
  • nrd - number of features for sparse subset search (default = 5)

Reproducing the figures and tables:

  1. To reproduce Figure 3a and Figure 10a, run the following three commands:
$ mkdir synthetic_theory
$ python3 -W ignore synthetic_theory.py --nr 100
$ python3 plot_synthetic_theory.py --nr 100
  1. To reproduce Figure 3b and Figure 10b, run the following three commands:
$ mkdir synthetic_algorithms
$ python3 -W ignore synthetic_algorithms.py --nr 100
$ python3 plot_synthetic_algorithms.py --nr 100
  1. To reproduce Figure 3c, run the following three commands:
$ mkdir synthetic_high_dimension
$ python3 -W ignore synthetic_high_dimension.py --nr 100
$ python3 plot_synthetic_high_dimension.py --nr 100
  1. To reproduce Table 1, run the following two commands:
$ mkdir syn-entner 
$ python3 -W ignore syn-entner --nr 100
  1. To reproduce Table 2, run the following two commands:
$ mkdir syn-cheng 
$ python3 -W ignore syn-cheng --nr 100
  1. To reproduce Figure 4, Figure 12a and Figure 12b, run the following three commands:
$ mkdir ihdp
$ python3 -W ignore ihdp.py --nr 100
$ python3 plot_ihdp.py --nr 100
  1. To reproduce Figure 5, run the following three commands:
$ mkdir cattaneo
$ python3 -W ignore cattaneo.py --nr 100
$ python3 plot_cattaneo.py --nr 100
  1. To reproduce Figure 11a and Figure 11c, run the following three commands:
$ mkdir synthetic_theory
$ python3 -W ignore synthetic_theory.py --nr 100 --use_t_in_e 0
$ python3 plot_synthetic_theory.py --nr 100 --use_t_in_e 0
  1. To reproduce Figure 11b and Figure 11d, run the following three commands:
$ mkdir synthetic_algorithms
$ python3 -W ignore synthetic_algorithms.py --nr 100 --use_t_in_e 0
$ python3 plot_ synthetic_algorithms.py --nr 100 --use_t_in_e 0
Owner
Abhin Shah
Graduate student at MIT. Former undergrad at IITBombay. Former intern at IBM and EPFL
Abhin Shah
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
A simple Python configuration file operator.

A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i

Scott Lau 2 Nov 08, 2021
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
TianyuQi 10 Dec 11, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
RoBERTa Marathi Language model trained from scratch during huggingface 🤗 x flax community week

RoBERTa base model for Marathi Language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa wa

Nipun Sadvilkar 23 Oct 19, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

English | 简体中文 Why Non-Euclidean Geometry Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-ho

Alibaba 123 Dec 12, 2022
[ICRA2021] Reconstructing Interactive 3D Scene by Panoptic Mapping and CAD Model Alignment

Interactive Scene Reconstruction Project Page | Paper This repository contains the implementation of our ICRA2021 paper Reconstructing Interactive 3D

97 Dec 28, 2022
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022