[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

Overview

RCIL

[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation
Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2, Ming-Ming Cheng1
1 College of Computer Science, Nankai University
2 The Hong Kong University of Science and Technology

Conference Paper

PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC

Method

截屏2022-04-09 上午1 02 44

Update

  • Coming Soon add data folder
  • Coming Soon init code for Classification
  • Coming Soon add training scripts for ADE20K and cityscapes
  • 09/04/2022 init code for segmentation
  • 09/04/2022 init readme

Benchmark and Setting

There are two commonly used settings, disjoint and overlapped. In the disjoint setting, assuming we know all classes in the future, the images in the current training step do not contain any classes in the future. The overlapped setting allows potential classes in the future to appear in the current training images. We call each training on the newly added dataset as a step. Formally, X-Y denotes the continual setting in our experiments, where X denotes the number of classes that we need to train in the first step. In each subsequent learning step, the newly added dataset contains Y classes.

There are some settings reported in our paper. You can also try it on other any custom settings.

  • Continual Class Segmentation:

    1. PASCAL VOC 2012 dataset:
      • 15-5 overlapped
      • 15-5 disjoint
      • 15-1 overlapped
      • 15-1 disjoint
      • 10-1 overlapped
      • 10-1 disjoint
    2. ADE20K dataset:
      • 100-50 overlapped
      • 100-10 overlapped
      • 50-50 overlapped
      • 100-5 overlapped
  • Continual Domain Segmentation:

    1. Cityscapes:
      • 11-5
      • 11-1
      • 1-1
  • Extension Experiments on Continual Classification

    1. ImageNet-100
      • 50-10

Performance

  • Continual Class Segmentation on PASCAL VOC 2012
Method Pub. 15-5 disjoint 15-5 overlapped 15-1 disjoint 15-1 overlapped 10-1 disjoint 10-1 overlapped
LWF TPAMI 2017 54.9 55.0 5.3 5.5 4.3 4.8
ILT ICCVW 2019 58.9 61.3 7.9 9.2 5.4 5.5
MiB CVPR 2020 65.9 70.0 39.9 32.2 6.9 20.1
SDR CVPR 2021 67.3 70.1 48.7 39.5 14.3 25.1
PLOP CVPR 2021 64.3 70.1 46.5 54.6 8.4 30.5
Ours CVPR 2022 67.3 72.4 54.7 59.4 18.2 34.3
  • Continual Class Segmentation on ADE20K
Method Pub. 100-50 overlapped 100-10 overlapped 50-50 overlapped 100-5 overlapped
ILT ICCVW 2019 17.0 1.1 9.7 0.5
MiB CVPR 2020 32.8 29.2 29.3 25.9
PLOP CVPR 2021 32.9 31.6 30.4 28.7
Ours CVPR 2022 34.5 32.1 32.5 29.6
  • Continual Domain Segmentation on Cityscapes
Method Pub. 11-5 11-1 1-1
LWF TPAMI 2017 59.7 57.3 33.0
LWF-MC CVPR 2017 58.7 57.0 31.4
ILT ICCVW 2019 59.1 57.8 30.1
MiB CVPR 2020 61.5 60.0 42.2
PLOP CVPR 2021 63.5 62.1 45.2
Ours CVPR 2022 64.3 63.0 48.9

Dataset Prepare

  • PASCVAL VOC 2012
    sh data/download_voc.sh
  • ADE20K
    sh data/download_ade.sh
  • Cityscapes
    sh data/download_cityscapes.sh

Environment

  1. conda install --yes --file requirements.txt
  2. Install inplace-abn

Training

  1. Dowload pretrained model from ResNet-101_iabn to pretrained/
  2. We have prepared some training scripts in scripts/. You can train the model by
sh scripts/voc/rcil_10-1-overlap.sh

Inference

You can simply modify the bash file by add --test, like

CUDA_VISIBLE_DEVICES=${GPU} python3 -m torch.distributed.launch --master_port ${PORT} --nproc_per_node=${NB_GPU} run.py --data xxx ... --test

Reference

If this work is useful for you, please cite us by:

@inproceedings{zhangCvpr22ContinuSSeg,
  title={Representation Compensation Networks for Continual Semantic Segmentation},
  author={Chang-Bin Zhang and Jiawen Xiao and Xialei Liu and Yingcong Chen and Ming-Ming Cheng},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Connect

If you have any questions about this work, please feel easy to connect with us (zhangchbin ^ gmail.com).

Thanks

This code is heavily borrowed from [MiB] and [PLOP].

Awesome Continual Segmentation

There is a collection of AWESOME things about continual semantic segmentation, including papers, code, demos, etc. Feel free to pull request and star.

2022

  • Representation Compensation Networks for Continual Semantic Segmentation [CVPR 2022] [PyTorch]
  • Self-training for Class-incremental Semantic Segmentation [TNNLS 2022] [PyTorch]
  • Uncertainty-aware Contrastive Distillation for Incremental Semantic Segmentation [TPAMI 2022] [[PyTorch]]

2021

  • PLOP: Learning without Forgetting for Continual Semantic Segmentation [CVPR 2021] [PyTorch]
  • Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations [CVPR2021] [PyTorch]
  • An EM Framework for Online Incremental Learning of Semantic Segmentation [ACM MM 2021] [PyTorch]
  • SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning [NeurIPS 2021] [PyTorch]

2020

2019

You might also like...
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

CVPR2022 paper
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Official code for
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Comments
  • Reproduce ADE20k

    Reproduce ADE20k

    Hi, thanks for sharing the code.

    I'm trying to reproduce the results for 100-50 ADE20k. Here are the hyper-parameters I used: --pod local --pod_factor 0.001 --pod_logits --classif_adaptive_factor --init_balanced --unce --unkd

    I get the all-mIoU=29.4%, which is much lower than the reported mIoU (34.5%). Could you please share with me the parameters you used to get the reported mIoU?

    opened by HieuPhan33 10
  • 15-1 Pascal-VOC Reproduce

    15-1 Pascal-VOC Reproduce

    Hi, I couldn't reproduce the results for 15-1 Pascal-VOC. I'm running the script voc/plop_15-1-overlap.sh. Since I have two GPUs with 24GB, I adjust the batch size to 12 and trained on 2 GPUs. This ensures the total batch size is 24 like your settings.

    Here are the results | | 0-15 | 16-20 | all | | ---- | ---- | --- | ---- | | Reproduce | 63.41 | 19.25 | 52.90 | | Reported | 70.60 | 23.70 | 59.40 |

    The results are far lower than the results reported in the paper. Could you please advise?

    opened by HieuPhan33 6
  • Reproduced results lower than the reported ones

    Reproduced results lower than the reported ones

    Hi, I directly ran the released codes without any modification. However, I found that the obtained results are lower than the reported ones by >1 percent point, especially the 10-1 setting with a large gap on the base (0-10) classes.

    Relevant log files are provided for your reference. Could you advise the possible reasons that may cause such a problem? Thanks a lot.

    | | 15-5 | | | 15-1 | | | 10-1 | | | |------------|------|-------|------|------|-------|------|------|-------|------| | | 0-15 | 16-20 | all | 0-15 | 16-20 | all | 0-10 | 11-20 | all | | Reported | 78.8 | 52.0 | 72.4 | 70.6 | 23.7 | 59.4 | 55.4 | 15.1 | 34.3 | | Reproduced | 76.7 | 48.4 | 70.0 | 69.0 | 20.5 | 57.4 | 38.0 | 13.4 | 26.3 |

    opened by Ze-Yang 3
  • Full results on Cityscapes

    Full results on Cityscapes

    Nice work! Could you publish the scripts and the corresponding results on Cityscapes? I failed to reproduce the experimental results reported in the paper. I set the batch size as 24. The initial learning rate is 0.02 for the first training step and 0.001 for the next continual learning steps. I train the model for each step with 50 epochs as the paper suggested.

    opened by XiaorongLi-95 4
Owner
Chang-Bin Zhang
Master student at Nankai University.
Chang-Bin Zhang
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022