Contrastive Learning Inverts the Data Generating Process

Overview

Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

3DIdent dataset example images

Experiments

To reproduce the disentanglement results for the MLP mixing, use the main_mlp.py script. For the experiments on KITTI Masks use the main_kitti.py script. For those on 3DIdent, use main_3dident.py.

MLP Mixing

> python main_mlp.py --help
usage: main_mlp.py
       [-h] [--sphere-r SPHERE_R] [--box-min BOX_MIN] [--box-max BOX_MAX]
       [--sphere-norm] [--box-norm] [--only-supervised] [--only-unsupervised]
       [--more-unsupervised MORE_UNSUPERVISED] [--save-dir SAVE_DIR]
       [--num-eval-batches NUM_EVAL_BATCHES] [--rej-mult REJ_MULT]
       [--seed SEED] [--act-fct ACT_FCT] [--c-param C_PARAM]
       [--m-param M_PARAM] [--tau TAU] [--n-mixing-layer N_MIXING_LAYER]
       [--n N] [--space-type {box,sphere,unbounded}] [--m-p M_P] [--c-p C_P]
       [--lr LR] [--p P] [--batch-size BATCH_SIZE] [--n-log-steps N_LOG_STEPS]
       [--n-steps N_STEPS] [--resume-training]

Disentanglement with InfoNCE/Contrastive Learning - MLP Mixing

optional arguments:
  -h, --help            show this help message and exit
  --sphere-r SPHERE_R
  --box-min BOX_MIN     For box normalization only. Minimal value of box.
  --box-max BOX_MAX     For box normalization only. Maximal value of box.
  --sphere-norm         Normalize output to a sphere.
  --box-norm            Normalize output to a box.
  --only-supervised     Only train supervised model.
  --only-unsupervised   Only train unsupervised model.
  --more-unsupervised MORE_UNSUPERVISED
                        How many more steps to do for unsupervised compared to
                        supervised training.
  --save-dir SAVE_DIR
  --num-eval-batches NUM_EVAL_BATCHES
                        Number of batches to average evaluation performance at
                        the end.
  --rej-mult REJ_MULT   Memory/CPU trade-off factor for rejection resampling.
  --seed SEED
  --act-fct ACT_FCT     Activation function in mixing network g.
  --c-param C_PARAM     Concentration parameter of the conditional
                        distribution.
  --m-param M_PARAM     Additional parameter for the marginal (only relevant
                        if it is not uniform).
  --tau TAU
  --n-mixing-layer N_MIXING_LAYER
                        Number of layers in nonlinear mixing network g.
  --n N                 Dimensionality of the latents.
  --space-type {box,sphere,unbounded}
  --m-p M_P             Type of ground-truth marginal distribution. p=0 means
                        uniform; all other p values correspond to (projected)
                        Lp Exponential
  --c-p C_P             Exponent of ground-truth Lp Exponential distribution.
  --lr LR
  --p P                 Exponent of the assumed model Lp Exponential
                        distribution.
  --batch-size BATCH_SIZE
  --n-log-steps N_LOG_STEPS
  --n-steps N_STEPS
  --resume-training

KITTI Masks

>python main_kitti.py --help
usage: main_kitti.py [-h] [--box-norm BOX_NORM] [--p P] [--experiment-dir EXPERIMENT_DIR] [--evaluate] [--specify SPECIFY] [--random-search] [--random-seeds] [--seed SEED] [--beta BETA] [--gamma GAMMA]
                     [--rate-prior RATE_PRIOR] [--data-distribution DATA_DISTRIBUTION] [--rate-data RATE_DATA] [--data-k DATA_K] [--betavae] [--search-beta] [--output-dir OUTPUT_DIR] [--log-dir LOG_DIR]
                     [--ckpt-dir CKPT_DIR] [--max-iter MAX_ITER] [--dataset DATASET] [--batch-size BATCH_SIZE] [--num-workers NUM_WORKERS] [--image-size IMAGE_SIZE] [--use-writer] [--z-dim Z_DIM] [--lr LR]
                     [--beta1 BETA1] [--beta2 BETA2] [--ckpt-name CKPT_NAME] [--log-step LOG_STEP] [--save-step SAVE_STEP] [--kitti-max-delta-t KITTI_MAX_DELTA_T] [--natural-discrete] [--verbose] [--cuda]
                     [--num_runs NUM_RUNS]

Disentanglement with InfoNCE/Contrastive Learning - KITTI Masks

optional arguments:
  -h, --help            show this help message and exit
  --box-norm BOX_NORM
  --p P
  --experiment-dir EXPERIMENT_DIR
                        specify path
  --evaluate            evaluate instead of train
  --specify SPECIFY     use argument to only compute a subset of metrics
  --random-search       whether to random search for params
  --random-seeds        whether to go over random seeds with UDR params
  --seed SEED           random seed
  --beta BETA           weight for kl to normal
  --gamma GAMMA         weight for kl to laplace
  --rate-prior RATE_PRIOR
                        rate (or inverse scale) for prior laplace (larger -> sparser).
  --data-distribution DATA_DISTRIBUTION
                        (laplace, uniform)
  --rate-data RATE_DATA
                        rate (or inverse scale) for data laplace (larger -> sparser). (-1 = rand).
  --data-k DATA_K       k for data uniform (-1 = rand).
  --betavae             whether to do standard betavae training (gamma=0)
  --search-beta         whether to do rand search over beta
  --output-dir OUTPUT_DIR
                        output directory
  --log-dir LOG_DIR     log directory
  --ckpt-dir CKPT_DIR   checkpoint directory
  --max-iter MAX_ITER   maximum training iteration
  --dataset DATASET     dataset name (dsprites, cars3d,smallnorb, shapes3d, mpi3d, kittimasks, natural
  --batch-size BATCH_SIZE
                        batch size
  --num-workers NUM_WORKERS
                        dataloader num_workers
  --image-size IMAGE_SIZE
                        image size. now only (64,64) is supported
  --use-writer          whether to use a log writer
  --z-dim Z_DIM         dimension of the representation z
  --lr LR               learning rate
  --beta1 BETA1         Adam optimizer beta1
  --beta2 BETA2         Adam optimizer beta2
  --ckpt-name CKPT_NAME
                        load previous checkpoint. insert checkpoint filename
  --log-step LOG_STEP   numer of iterations after which data is logged
  --save-step SAVE_STEP
                        number of iterations after which a checkpoint is saved
  --kitti-max-delta-t KITTI_MAX_DELTA_T
                        max t difference between frames sampled from kitti data loader.
  --natural-discrete    discretize natural sprites
  --verbose             for evaluation
  --cuda
  --num_runs NUM_RUNS   when searching over seeds, do 10

3DIdent

>python main_3dident.py --help
usage: main_3dident.py [-h] [--batch-size BATCH_SIZE] [--n-eval-samples N_EVAL_SAMPLES] [--lr LR] [--optimizer {adam,sgd}] [--iterations ITERATIONS]
                                                                   [--n-log-steps N_LOG_STEPS] [--load-model LOAD_MODEL] [--save-model SAVE_MODEL] [--save-every SAVE_EVERY] [--no-cuda] [--position-only]
                                                                   [--rotation-and-color-only] [--rotation-only] [--color-only] [--no-spotlight-position] [--no-spotlight-color] [--no-spotlight]
                                                                   [--non-periodic-rotation-and-color] [--dummy-mixing] [--identity-solution] [--identity-mixing-and-solution]
                                                                   [--approximate-dataset-nn-search] --offline-dataset OFFLINE_DATASET [--faiss-omp-threads FAISS_OMP_THREADS]
                                                                   [--box-constraint {None,fix,learnable}] [--sphere-constraint {None,fix,learnable}] [--workers WORKERS]
                                                                   [--mode {supervised,unsupervised,test}] [--supervised-loss {mse,r2}] [--unsupervised-loss {l1,l2,l3,vmf}]
                                                                   [--non-periodical-conditional {l1,l2,l3}] [--sigma SIGMA] [--encoder {rn18,rn50,rn101,rn151}]

Disentanglement with InfoNCE/Contrastive Learning - 3DIdent

optional arguments:
  -h, --help            show this help message and exit
  --batch-size BATCH_SIZE
  --n-eval-samples N_EVAL_SAMPLES
  --lr LR
  --optimizer {adam,sgd}
  --iterations ITERATIONS
                        How long to train the model
  --n-log-steps N_LOG_STEPS
                        How often to calculate scores and print them
  --load-model LOAD_MODEL
                        Path from where to load the model
  --save-model SAVE_MODEL
                        Path where to save the model
  --save-every SAVE_EVERY
                        After how many steps to save the model (will always be saved at the end)
  --no-cuda
  --position-only
  --rotation-and-color-only
  --rotation-only
  --color-only
  --no-spotlight-position
  --no-spotlight-color
  --no-spotlight
  --non-periodic-rotation-and-color
  --dummy-mixing
  --identity-solution
  --identity-mixing-and-solution
  --approximate-dataset-nn-search
  --offline-dataset OFFLINE_DATASET
  --faiss-omp-threads FAISS_OMP_THREADS
  --box-constraint {None,fix,learnable}
  --sphere-constraint {None,fix,learnable}
  --workers WORKERS     Number of workers to use (0=#cpus)
  --mode {supervised,unsupervised,test}
  --supervised-loss {mse,r2}
  --unsupervised-loss {l1,l2,l3,vmf}
  --non-periodical-conditional {l1,l2,l3}
  --sigma SIGMA         Sigma of the conditional distribution (for vMF: 1/kappa)
  --encoder {rn18,rn50,rn101,rn151}

3DIdent Dataset

We introduce 3Dident, a dataset with hallmarks of natural environments (shadows, different lighting conditions, 3D rotations, etc.). A preliminary version of the dataset is released along with our pre-print.

3DIdent dataset example images

You can access the dataset here. The training and test datasets consists of 250000 and 25000 samples, respectively. To load, you can use the ThreeDIdentDataset class defined in datasets/threedident_dataset.py.

BibTeX

If you find our analysis helpful, please cite our pre-print:

@article{zimmermann2021cl,
  author = {
    Zimmermann, Roland S. and
    Sharma, Yash and
    Schneider, Steffen and
    Bethge, Matthias and
    Brendel, Wieland
  },
  title = {
    Contrastive Learning Inverts the Data Generating Process
  },
  journal = {CoRR},
  volume = {abs/2102.08850},
  year = {2021},
}
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Deep Learning Slide Captcha

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 55 Jan 02, 2023
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 05, 2023
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023