Official implementation of YOGO for Point-Cloud Processing

Related tags

Deep LearningYOGO
Overview

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module

By Chenfeng Xu, Bohan Zhai, Bichen Wu, Tian Li, Wei Zhan, Peter Vajda, Kurt Keutzer, and Masayoshi Tomizuka.

This repository contains a Pytorch implementation of YOGO, a new, simple, and elegant model for point-cloud processing. The framework of our YOGO is shown below:

Selected quantitative results of different approaches on the ShapeNet and S3DIS dataset.

ShapeNet part segmentation:

Method mIoU Latency (ms) GPU Memory (GB)
PointNet 83.7 21.4 1.5
RSNet 84.9 73.8 0.8
PointNet++ 85.1 77.7 2.0
DGCNN 85.1 86.7 2.4
PointCNN 86.1 134.2 2.5
YOGO(KNN) 85.2 25.6 0.9
YOGO(Ball query) 85.1 21.3 1.0

S3DIS scene parsing:

Method mIoU Latency (ms) GPU Memory (GB)
PointNet 42.9 24.8 1.0
RSNet 51.9 111.5 1.1
PointNet++* 50.7 501.5 1.6
DGCNN 47.9 174.3 2.4
PointCNN 57.2 282.4 4.6
YOGO(KNN) 54.0 27.7 2.0
YOGO(Ball query) 53.8 24.0 2.0

For more detail, please refer to our paper: YOGO. The work is a follow-up work to SqueezeSegV3 and Visual Transformers. If you find this work useful for your research, please consider citing:

@misc{xu2021group,
      title={You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module}, 
      author={Chenfeng Xu and Bohan Zhai and Bichen Wu and Tian Li and Wei Zhan and Peter Vajda and Kurt Keutzer and Masayoshi Tomizuka},
      year={2021},
      eprint={2103.09975},
      archivePrefix={arXiv},
      primaryClass={cs.RO}
}

Related works:

@inproceedings{xu2020squeezesegv3,
  title={Squeezesegv3: Spatially-adaptive convolution for efficient point-cloud segmentation},
  author={Xu, Chenfeng and Wu, Bichen and Wang, Zining and Zhan, Wei and Vajda, Peter and Keutzer, Kurt and Tomizuka, Masayoshi},
  booktitle={European Conference on Computer Vision},
  pages={1--19},
  year={2020},
  organization={Springer}
}
@misc{wu2020visual,
      title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, 
      author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda},
      year={2020},
      eprint={2006.03677},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

YOGO is released under the BSD license (See LICENSE for details).

Installation

The instructions are tested on Ubuntu 16.04 with python 3.6 and Pytorch 1.5 with GPU support.

  • Clone the YOGO repository:
git clone https://github.com/chenfengxu714/YOGO.git
  • Use pip to install required Python packages:
pip install -r requirements.txt
  • Install KNN library:
cd convpoint/knn/
python setup.py install --home='.'

Pre-trained Models

The pre-trained YOGO is avalible at Google Drive, you can directly download them.

Inference

To infer the predictions for the entire dataset:

python train.py [config-file] --devices [gpu-ids] --evaluate --configs.evaluate.best_checkpoint_path [path to the model checkpoint]

for example, you can run the below command for ShapeNet inference:

python train.py configs/shapenet/yogo/yogo.py --devices 0 --evaluate --configs.evaluate.best_checkpoint_path ./runs/shapenet/best.pth

Training:

To train the model:

python train.py [config-file] --devices [gpu-ids] --evaluate --configs.evaluate.best_checkpoint_path [path to the model checkpoint]

for example, you can run the below command for ShapeNet training:

python train.py configs/shapenet/yogo/yogo.py --devices 0

You can run the below command for multi-gpu training:

python train.py configs/shapenet/yogo/yogo.py --devices 0,1,2,3

Note that we conduct training on Titan RTX gpu, you can modify the batch size according your GPU memory, the performance is slightly different.

Acknowledgement:

The code is modified from PVCNN and the code for KNN is from Pointconv.

Owner
Chenfeng Xu
A Ph.D. student in UC Berkeley.
Chenfeng Xu
Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021)

Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021) Authors: Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, Le Song Link to pap

Xinshi Chen 2 Dec 20, 2021
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Joint Discriminative and Generative Learning for Person Re-identification [Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp] Joint Discriminative

NVIDIA Research Projects 1.2k Dec 30, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

Numenta 6.3k Dec 30, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022