Official implementation of YOGO for Point-Cloud Processing

Related tags

Deep LearningYOGO
Overview

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module

By Chenfeng Xu, Bohan Zhai, Bichen Wu, Tian Li, Wei Zhan, Peter Vajda, Kurt Keutzer, and Masayoshi Tomizuka.

This repository contains a Pytorch implementation of YOGO, a new, simple, and elegant model for point-cloud processing. The framework of our YOGO is shown below:

Selected quantitative results of different approaches on the ShapeNet and S3DIS dataset.

ShapeNet part segmentation:

Method mIoU Latency (ms) GPU Memory (GB)
PointNet 83.7 21.4 1.5
RSNet 84.9 73.8 0.8
PointNet++ 85.1 77.7 2.0
DGCNN 85.1 86.7 2.4
PointCNN 86.1 134.2 2.5
YOGO(KNN) 85.2 25.6 0.9
YOGO(Ball query) 85.1 21.3 1.0

S3DIS scene parsing:

Method mIoU Latency (ms) GPU Memory (GB)
PointNet 42.9 24.8 1.0
RSNet 51.9 111.5 1.1
PointNet++* 50.7 501.5 1.6
DGCNN 47.9 174.3 2.4
PointCNN 57.2 282.4 4.6
YOGO(KNN) 54.0 27.7 2.0
YOGO(Ball query) 53.8 24.0 2.0

For more detail, please refer to our paper: YOGO. The work is a follow-up work to SqueezeSegV3 and Visual Transformers. If you find this work useful for your research, please consider citing:

@misc{xu2021group,
      title={You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module}, 
      author={Chenfeng Xu and Bohan Zhai and Bichen Wu and Tian Li and Wei Zhan and Peter Vajda and Kurt Keutzer and Masayoshi Tomizuka},
      year={2021},
      eprint={2103.09975},
      archivePrefix={arXiv},
      primaryClass={cs.RO}
}

Related works:

@inproceedings{xu2020squeezesegv3,
  title={Squeezesegv3: Spatially-adaptive convolution for efficient point-cloud segmentation},
  author={Xu, Chenfeng and Wu, Bichen and Wang, Zining and Zhan, Wei and Vajda, Peter and Keutzer, Kurt and Tomizuka, Masayoshi},
  booktitle={European Conference on Computer Vision},
  pages={1--19},
  year={2020},
  organization={Springer}
}
@misc{wu2020visual,
      title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, 
      author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda},
      year={2020},
      eprint={2006.03677},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

YOGO is released under the BSD license (See LICENSE for details).

Installation

The instructions are tested on Ubuntu 16.04 with python 3.6 and Pytorch 1.5 with GPU support.

  • Clone the YOGO repository:
git clone https://github.com/chenfengxu714/YOGO.git
  • Use pip to install required Python packages:
pip install -r requirements.txt
  • Install KNN library:
cd convpoint/knn/
python setup.py install --home='.'

Pre-trained Models

The pre-trained YOGO is avalible at Google Drive, you can directly download them.

Inference

To infer the predictions for the entire dataset:

python train.py [config-file] --devices [gpu-ids] --evaluate --configs.evaluate.best_checkpoint_path [path to the model checkpoint]

for example, you can run the below command for ShapeNet inference:

python train.py configs/shapenet/yogo/yogo.py --devices 0 --evaluate --configs.evaluate.best_checkpoint_path ./runs/shapenet/best.pth

Training:

To train the model:

python train.py [config-file] --devices [gpu-ids] --evaluate --configs.evaluate.best_checkpoint_path [path to the model checkpoint]

for example, you can run the below command for ShapeNet training:

python train.py configs/shapenet/yogo/yogo.py --devices 0

You can run the below command for multi-gpu training:

python train.py configs/shapenet/yogo/yogo.py --devices 0,1,2,3

Note that we conduct training on Titan RTX gpu, you can modify the batch size according your GPU memory, the performance is slightly different.

Acknowledgement:

The code is modified from PVCNN and the code for KNN is from Pointconv.

Owner
Chenfeng Xu
A Ph.D. student in UC Berkeley.
Chenfeng Xu
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity Indic TTS Samples can be found at https://peter-yh-wu.github.io/cross-

Peter Wu 1 Nov 12, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021