Variational autoencoder for anime face reconstruction

Overview

VAE animeface

Variational autoencoder for anime face reconstruction

Introduction

This repository is an exploratory example to train a variational autoencoder to extract meaningful feature representations of anime girl face images.

The code architecture is mostly borrowed and modified from Yann Dubois's disentangling-vae repository. It has nice summarization and comparison of the different VAE model proposed recently.

Dataset

Anime Face Dataset contains 63,632 anime faces. (all rescaled to 64x64 in training)

https://raw.githubusercontent.com/Mckinsey666/Anime-Face-Dataset/master/test.jpg

Model

The model used is the one proposed in the paper Understanding disentangling in β-VAE, which is summarized below:

https://github.com/YannDubs/disentangling-vae/raw/master/doc/imgs/architecture.png

I used laplace as the target distribution to calculate the reconstruction loss. From Yann's code, it suggests that bernoulli would generally a better choice, but it looks it converge slowly in my case. (I didn't do a fair comparison to be conclusive)

Loss function used is β-VAEH from β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework.

Result

Latent feature number is set to 20 (10 gaussian mean, 10 log gaussian variance). VAE model is trained for 100 epochs. All data is used for training, no validation and testing applied.

Face reconstruction

results/laplace_betaH_loss/test1_recons.png

results/laplace_betaH_loss/test2_recons.png

results/laplace_betaH_loss/test3_recons.png

Prior space traversal

Based on the face reconstruction result while traversing across the latent space, we may speculate the generative property of each latent as following:

  1. Hair shade
  2. Hair length
  3. Face orientation
  4. Hair color
  5. Face rotation
  6. Bangs, face color
  7. Hair glossiness
  8. Unclear
  9. Eye size & color
  10. Bangs

results/laplace_betaH_loss/test_prior_traversals.png

Original faces clustering

Original anime faces are clustered based on latent features (selected feature is either below 1% (left 5) or above 99% (right 5) among all data points, while the rest latent features are closeto each other). Visulization of the original images mostly confirms the speculation above.

results/laplace_betaH_loss/test_original_traversals.png

Latent feature diagnosis

Learned latent features are all close to standard normal distribution, and show minimum correlation.

results/laplace_betaH_loss/latent_diagnosis.png

Owner
Minzhe Zhang
Graduate student in UT Southwestern Medical Center. Bioinformatician. Computational biologist.
Minzhe Zhang
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
Pyramid Scene Parsing Network, CVPR2017.

Pyramid Scene Parsing Network by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page. Introduction This

Hengshuang Zhao 1.5k Jan 05, 2023
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022