Variational autoencoder for anime face reconstruction

Overview

VAE animeface

Variational autoencoder for anime face reconstruction

Introduction

This repository is an exploratory example to train a variational autoencoder to extract meaningful feature representations of anime girl face images.

The code architecture is mostly borrowed and modified from Yann Dubois's disentangling-vae repository. It has nice summarization and comparison of the different VAE model proposed recently.

Dataset

Anime Face Dataset contains 63,632 anime faces. (all rescaled to 64x64 in training)

https://raw.githubusercontent.com/Mckinsey666/Anime-Face-Dataset/master/test.jpg

Model

The model used is the one proposed in the paper Understanding disentangling in β-VAE, which is summarized below:

https://github.com/YannDubs/disentangling-vae/raw/master/doc/imgs/architecture.png

I used laplace as the target distribution to calculate the reconstruction loss. From Yann's code, it suggests that bernoulli would generally a better choice, but it looks it converge slowly in my case. (I didn't do a fair comparison to be conclusive)

Loss function used is β-VAEH from β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework.

Result

Latent feature number is set to 20 (10 gaussian mean, 10 log gaussian variance). VAE model is trained for 100 epochs. All data is used for training, no validation and testing applied.

Face reconstruction

results/laplace_betaH_loss/test1_recons.png

results/laplace_betaH_loss/test2_recons.png

results/laplace_betaH_loss/test3_recons.png

Prior space traversal

Based on the face reconstruction result while traversing across the latent space, we may speculate the generative property of each latent as following:

  1. Hair shade
  2. Hair length
  3. Face orientation
  4. Hair color
  5. Face rotation
  6. Bangs, face color
  7. Hair glossiness
  8. Unclear
  9. Eye size & color
  10. Bangs

results/laplace_betaH_loss/test_prior_traversals.png

Original faces clustering

Original anime faces are clustered based on latent features (selected feature is either below 1% (left 5) or above 99% (right 5) among all data points, while the rest latent features are closeto each other). Visulization of the original images mostly confirms the speculation above.

results/laplace_betaH_loss/test_original_traversals.png

Latent feature diagnosis

Learned latent features are all close to standard normal distribution, and show minimum correlation.

results/laplace_betaH_loss/latent_diagnosis.png

Owner
Minzhe Zhang
Graduate student in UT Southwestern Medical Center. Bioinformatician. Computational biologist.
Minzhe Zhang
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021