Stitch it in Time: GAN-Based Facial Editing of Real Videos

Related tags

Deep LearningSTIT
Overview

STIT - Stitch it in Time

arXiv CGP WAI

[Project Page]

Stitch it in Time: GAN-Based Facial Editing of Real Videos
Rotem Tzaban, Ron Mokady, Rinon Gal, Amit Bermano, Daniel Cohen-Or

Abstract:
The ability of Generative Adversarial Networks to encode rich semantics within their latent space has been widely adopted for facial image editing. However, replicating their success with videos has proven challenging. Sets of high-quality facial videos are lacking, and working with videos introduces a fundamental barrier to overcome - temporal coherency. We propose that this barrier is largely artificial. The source video is already temporally coherent, and deviations from this state arise in part due to careless treatment of individual components in the editing pipeline. We leverage the natural alignment of StyleGAN and the tendency of neural networks to learn low frequency functions, and demonstrate that they provide a strongly consistent prior. We draw on these insights and propose a framework for semantic editing of faces in videos, demonstrating significant improvements over the current state-of-the-art. Our method produces meaningful face manipulations, maintains a higher degree of temporal consistency, and can be applied to challenging, high quality, talking head videos which current methods struggle with.

Requirements

Pytorch(tested with 1.10, should work with 1.8/1.9 as well) + torchvision

For the rest of the requirements, run:

pip install Pillow imageio imageio-ffmpeg dlib face-alignment opencv-python click wandb tqdm scipy matplotlib clip lpips 

Pretrained models

In order to use this project you need to download pretrained models from the following Link.

Unzip it inside the project's main directory.

You can use the download_models.sh script (requires installing gdown with pip install gdown)

Alternatively, you can unzip the models to a location of your choice and update configs/path_config.py accordingly.

Splitting videos into frames

Our code expects videos in the form of a directory with individual frame images. To produce such a directory from an existing video, we recommend using ffmpeg:

ffmpeg -i "video.mp4" "video_frames/out%04d.png"

Example Videos

The videos used to produce our results can be downloaded from the following Link.

Inversion

To invert a video run:

python train.py --input_folder /path/to/images_dir \ 
 --output_folder /path/to/experiment_dir \
 --run_name RUN_NAME \
 --num_pti_steps NUM_STEPS

This includes aligning, cropping, e4e encoding and PTI

For example:

python train.py --input_folder /data/obama \ 
 --output_folder training_results/obama \
 --run_name obama \
 --num_pti_steps 80

Weights and biases logging is disabled by default. to enable, add --use_wandb

Naive Editing

To run edits without stitching tuning:

python edit_video.py --input_folder /path/to/images_dir \ 
 --output_folder /path/to/experiment_dir \
 --run_name RUN_NAME \
 --edit_name EDIT_NAME \
 --edit_range EDIT_RANGE \  

edit_range determines the strength of the edits applied. It should be in the format RANGE_START RANGE_END RANGE_STEPS.
for example, if we use --edit_range 1 5 2, we will apply edits with strength 1, 3 and 5.

For young Obama use:

python edit_video.py --input_folder /data/obama \ 
 --output_folder edits/obama/ \
 --run_name obama \
 --edit_name age \
 --edit_range -8 -8 1 \  

Editing + Stitching Tuning

To run edits with stitching tuning:

python edit_video_stitching_tuning.py --input_folder /path/to/images_dir \ 
 --output_folder /path/to/experiment_dir \
 --run_name RUN_NAME \
 --edit_name EDIT_NAME \
 --edit_range EDIT_RANGE \
 --outer_mask_dilation MASK_DILATION

We support early breaking the stitching tuning process, when the loss reaches a specified threshold.
This enables us to perform more iterations for difficult frames while maintaining a reasonable running time.
To use this feature, add --border_loss_threshold THRESHOLD to the command(Shown in the Jim and Kamala Harris examples below).
For videos with a simple background to reconstruct (e.g Obama, Jim, Emma Watson, Kamala Harris), we use THRESHOLD=0.005.
For videos where a more exact reconstruction of the background is required (e.g Michael Scott), we use THRESHOLD=0.002.
Early breaking is disabled by default.

For young Obama use:

python edit_video_stitching_tuning.py --input_folder /data/obama \ 
 --output_folder edits/obama/ \
 --run_name obama \
 --edit_name age \
 --edit_range -8 -8 1 \  
 --outer_mask_dilation 50

For gender editing on Obama use:

python edit_video_stitching_tuning.py --input_folder /data/obama \ 
 --output_folder edits/obama/ \
 --run_name obama \
 --edit_name gender \
 --edit_range -6 -6 1 \  
 --outer_mask_dilation 50

For young Emma Watson use:

python edit_video_stitching_tuning.py --input_folder /data/emma_watson \ 
 --output_folder edits/emma_watson/ \
 --run_name emma_watson \
 --edit_name age \
 --edit_range -8 -8 1 \  
 --outer_mask_dilation 50

For smile removal on Emma Watson use:

python edit_video_stitching_tuning.py --input_folder /data/emma_watson \ 
 --output_folder edits/emma_watson/ \
 --run_name emma_watson \
 --edit_name smile \
 --edit_range -3 -3 1 \  
 --outer_mask_dilation 50

For Emma Watson lipstick editing use: (done with styleclip global direction)

python edit_video_stitching_tuning.py --input_folder /data/emma_watson \ 
 --output_folder edits/emma_watson/ \
 --run_name emma_watson \
 --edit_type styleclip_global \
 --edit_name lipstick \
 --neutral_class "Face" \
 --target_class "Face with lipstick" \
 --beta 0.2 \
 --edit_range 10 10 1 \  
 --outer_mask_dilation 50

For Old + Young Jim use (with early breaking):

python edit_video_stitching_tuning.py --input_folder datasets/jim/ \
 --output_folder edits/jim \
 --run_name jim \
 --edit_name age \
 --edit_range -8 8 2 \
 --outer_mask_dilation 50 \ 
 --border_loss_threshold 0.005

For smiling Kamala Harris:

python edit_video_stitching_tuning.py \
 --input_folder datasets/kamala/ \ 
 --output_folder edits/kamala \
 --run_name kamala \
 --edit_name smile \
 --edit_range 2 2 1 \
 --outer_mask_dilation 50 \
 --border_loss_threshold 0.005

Example Results

With stitching tuning:

out.mp4

Without stitching tuning:

out.mp4

Gender editing:

out.mp4

Young Emma Watson:

out.mp4

Emma Watson with lipstick:

out.mp4

Emma Watson smile removal:

out.mp4

Old Jim:

out.mp4

Young Jim:

out.mp4

Smiling Kamala Harris:

out.mp4

Out of domain video editing (Animations)

For editing out of domain videos, Some different parameters are required while training. First, dlib's face detector doesn't detect all animated faces, so we use a different face detector provided by the face_alignment package. Second, we reduce the smoothing of the alignment parameters with --center_sigma 0.0 Third, OOD videos require more training steps, as they are more difficult to invert.

To train, we use:

python train.py --input_folder datasets/ood_spiderverse_gwen/ \
 --output_folder training_results/ood \
 --run_name ood \
 --num_pti_steps 240 \
 --use_fa \
 --center_sigma 0.0

Afterwards, editing is performed the same way:

python edit_video.py --input_folder datasets/ood_spiderverse_gwen/ \
 --output_folder edits/ood --run_name ood \
 --edit_name smile --edit_range 2 2 1

out.mp4

python edit_video.py --input_folder datasets/ood_spiderverse_gwen/ \
 --output_folder edits/ood \
 --run_name ood \
 --edit_type styleclip_global
 --edit_range 10 10 1
 --edit_name lipstick
 --target_class 'Face with lipstick'

out.mp4

Credits:

StyleGAN2-ada model and implementation:
https://github.com/NVlabs/stylegan2-ada-pytorch Copyright © 2021, NVIDIA Corporation.
Nvidia Source Code License https://nvlabs.github.io/stylegan2-ada-pytorch/license.html

PTI implementation:
https://github.com/danielroich/PTI
Copyright (c) 2021 Daniel Roich
License (MIT) https://github.com/danielroich/PTI/blob/main/LICENSE

LPIPS model and implementation:
https://github.com/richzhang/PerceptualSimilarity
Copyright (c) 2020, Sou Uchida
License (BSD 2-Clause) https://github.com/richzhang/PerceptualSimilarity/blob/master/LICENSE

e4e model and implementation:
https://github.com/omertov/encoder4editing Copyright (c) 2021 omertov
License (MIT) https://github.com/omertov/encoder4editing/blob/main/LICENSE

StyleCLIP model and implementation:
https://github.com/orpatashnik/StyleCLIP Copyright (c) 2021 orpatashnik
License (MIT) https://github.com/orpatashnik/StyleCLIP/blob/main/LICENSE

StyleGAN2 Distillation for Feed-forward Image Manipulation - for editing directions:
https://github.com/EvgenyKashin/stylegan2-distillation
Copyright (c) 2019, Yandex LLC
License (Creative Commons NonCommercial) https://github.com/EvgenyKashin/stylegan2-distillation/blob/master/LICENSE

face-alignment Library:
https://github.com/1adrianb/face-alignment
Copyright (c) 2017, Adrian Bulat
License (BSD 3-Clause License) https://github.com/1adrianb/face-alignment/blob/master/LICENSE

face-parsing.PyTorch:
https://github.com/zllrunning/face-parsing.PyTorch
Copyright (c) 2019 zll
License (MIT) https://github.com/zllrunning/face-parsing.PyTorch/blob/master/LICENSE

Citation

If you make use of our work, please cite our paper:

@misc{tzaban2022stitch,
      title={Stitch it in Time: GAN-Based Facial Editing of Real Videos},
      author={Rotem Tzaban and Ron Mokady and Rinon Gal and Amit H. Bermano and Daniel Cohen-Or},
      year={2022},
      eprint={2201.08361},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social lea

9 Nov 29, 2022
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
This repo tries to recognize faces in the dataset you created

YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma

Mehdi KOŞACA 2 Dec 30, 2021
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 04, 2023
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022