Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

Overview

PPO-BiHyb

This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

A Brief introduction

In this paper, we propose a general deep learning pipeline for combinatorial optimization problems on graphs. The neural network is learned with Proximal Policy Optimization (PPO), under our Bi-Level Hybrid optimization pipeline. Thus our method is called PPO-BiHyb. This section is aimed for a brief summary, and we recommend referring to our paper if you do not want to miss any details.

The family of existing machine learning for combinatorial optimization methods follow the following single-level pipeline: single-level optimization and the neural network is designed to lean the mapping from the input graph G to the decision variable X. It brings challenges like the sparse reward issue in RL training, and it also makes the model design non-trivial to ensure that it has enough model capacity to learn such a mapping.

In contrast, in this paper, we propose a bi-level optimization formulation: bi-level optimization where we introduce the optimized graph G'. The upper-level problem is to optimize G', and we design a PPO-based agent for this task; the lower-level optimization is to solve the optimization problem with G', and we resort to existing heuristic algorithms for this task.

The overview of our pipeline is summarized as follows overview

And Here is our implementation of the proposed framework on 3 problems: implement-on-3-problems

  • DAG scheduling problem models the computer resource scheduling problem in data centers, where the computer jobs are represented by Directed Acyclic Graphs (DAGs) and our aim is to minimize the makespan time to finish all jobs as soon as possible. This optimization problem is NP-hard.
  • Graph Edit Distance (GED) problem is a popular graph distance metric, and it is inherently an NP-hard combinatorial optimization problem whose aim is to minimize the graph edit cost between two graphs.
  • Hamiltonian Cycle Problem (HCP) arises from the famous 7 bridges problem by Euler: given a graph, decide whether exist a valid Hamiltonian cycle in this graph (i.e. a path that travels all nodes without visiting a node twice). This decision problem is NP-complete.

Experiment Results

DAG scheduling (objective & relative: smaller is better)

TPC-H-50 (#nodes=467.2) TPC-H-100 (#nodes=929.8) TPC-H-150 (#nodes=1384.5)
objective relative objective relative objective relative
shortest job first 12818 30.5% 19503 15.3% 27409 12.2%
tetris scheduling 12113 23.3% 18291 8.1% 25325 3.7%
critical path 9821 0.0% 16914 0.0% 24429 0.0%
PPO-Single 10578 7.7% 17282 2.2% 24822 1.6%
Random-BiHyb 9270 -5.6% 15580 -7.9% 22930 -6.1%
PPO-BiHyb (ours) 8906 -9.3% 15193 -10.2% 22371 -8.4%

GED (objective & relative: smaller is better)

AIDS-20/30 (#nodes=22.6) AIDS-30/50 (#nodes=37.9) AIDS-50+ (#nodes=59.6)
objective relative objective relative objective relative
Hungarian 72.9 94.9% 153.4 117.9% 225.6 121.4%
RRWM 72.1 92.8% 139.8 98.6% 214.6 110.6%
Hungarian-Search 44.6 19.3% 103.9 47.6% 143.8 41.1%
IPFP 37.4 0.0% 70.4 0.0% 101.9 0.0%
PPO-Single 56.5 51.1% 110.0 56.3% 183.9 80.5%
Random-BiHyb 33.1 -11.5% 66.0 -6.3% 82.4 -19.1%
PPO-BiHyb (ours) 29.1 -22.2% 61.1 -13.2% 77.0 -24.4%

HCP (TSP objective: smaller is better, found cycles: larger is better)

FHCP-500/600 (#nodes=535.1)
TSP objective found cycles
Nearest Neighbor 79.6 0%
Farthest Insertion 133.0 0%
LKH3-fast 13.8 0%
LKH3-accu 6.3 20%
PPO-Single 9.5 0%
Random-BiHyb 10.0 0%
PPO-BiHyb (ours) 6.7 25%

Environment set up

This code is developed and tested on Ubuntu 16.04 with Python 3.6.9, Pytorch 1.7.1, CUDA 10.1.

Install required pacakges:

export TORCH=1.7.0
export CUDA=cu101
pip install torch==1.7.1+${CUDA} torchvision==0.8.2+${CUDA} torchaudio===0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install --no-index --upgrade torch-scatter -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install --no-index --upgrade torch-sparse -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install --no-index --upgrade torch-spline-conv -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install --upgrade torch-geometric
pip install tensorboard
pip install networkx==2.2
pip install ortools
pip install texttable
pip install tsplib95
pip install cython

Install SVN which is required when retriving the GED dataset:

sudo apt install subversion

Compile the A-star code which is required by the GED problem:

python3 setup.py build_ext --inplace

Install LKH-3 which is required by the HCP experiment:

wget http://webhotel4.ruc.dk/~keld/research/LKH-3/LKH-3.0.6.tgz
tar xvfz LKH-3.0.6.tgz
cd LKH-3.0.6
make

And you should find an executable at ./LKH-3.0.6/LKH, which will be called by our code.

Run Experiments

We provide the implementation of PPO-BiHyb and the single-level RL baseline PPO-Single used in our paper. To run evaluation from a pretrained model, replace train by eval in the following commands.

DAG Scheduling

PPO-BiHyb:

python dag_ppo_bihyb_train.py --config ppo_bihyb_dag.yaml

PPO-Single:

python dag_ppo_single_train.py --config ppo_single_dag.yaml

To test different problem sizes, please modify this entry in the yaml file: num_init_dags: 50 (to reproduce the results in our paper, please set 50/100/150)

Graph Edit Distance (GED)

PPO-BiHyb:

python ged_ppo_bihyb_train.py --config ppo_bihyb_ged.yaml

PPO-Single:

python ged_ppo_single_train.py --config ppo_single_ged.yaml

To test different problem sizes, please modify this entry in the yaml file: dataset: AIDS-20-30 (to reproduce the results in our paper, please set AIDS-20-30/AIDS-30-50/AIDS-50-100)

Hamiltonian Cycle Problem (HCP)

PPO-BiHyb:

python hcp_ppo_bihyb_train.py --config ppo_bihyb_hcp.yaml

PPO-Single:

python hcp_ppo_single_train.py --config ppo_single_hcp.yaml

Some Remarks

The yaml configs are set for the smallest sized problems by default. For PPO-Single, you may need to adjust the max_timesteps config for larger-sized problems to ensures that the RL agent can predict a valid solution.

Pretrained models

We provide pretrained models for PPO-BiHyb on these three problems, which are stored in ./pretrained. To use your own parameters, please set the test_model_weight configuration in the yaml file.

Citation and Credits

If you find our paper/code useful in your research, please citing

@inproceedings{wang2021bilevel,
    title={A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs}, 
    author={Runzhong Wang and Zhigang Hua and Gan Liu and Jiayi Zhang and Junchi Yan and Feng Qi and Shuang Yang and Jun Zhou and Xiaokang Yang},
    year={2021},
    booktitle={NeurIPS}
}

And we would like to give credits to the following online resources and thank their great work:

Owner
[email protected]
Thinklab at Shanghai Jiao Tong University, led by Prof. Junchi Yan.
<a href=[email protected]">
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
AnimationKit: AI Upscaling & Interpolation using Real-ESRGAN+RIFE

ALPHA 2.5: Frostbite Revival (Released 12/23/21) Changelog: [ UI ] Chained design. All steps link to one another! Use the master override toggles to s

87 Nov 16, 2022
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022