Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Overview

Inter-Prototype (BMVC 2021): Official Project Webpage

This repository provides the official PyTorch implementation of the following paper:

Improving Face Recognition with Large Age Gaps by Learning to Distinguish Children
Jungsoo Lee* (KAIST AI), Jooyeol Yun* (KAIST AI), Sunghyun Park (KAIST AI),
Yonggyu Kim (Korea Univ.), and Jaegul Choo (KAIST AI) (*: equal contribution)
BMVC 2021

Paper: Arxiv

Abstract: Despite the unprecedented improvement of face recognition, existing face recognition models still show considerably low performances in determining whether a pair of child and adult images belong to the same identity. Previous approaches mainly focused on increasing the similarity between child and adult images of a given identity to overcome the discrepancy of facial appearances due to aging. However, we observe that reducing the similarity between child images of different identities is crucial for learning distinct features among children and thus improving face recognition performance in child-adult pairs. Based on this intuition, we propose a novel loss function called the Inter-Prototype loss which minimizes the similarity between child images. Unlike the previous studies, the Inter-Prototype loss does not require additional child images or training additional learnable parameters. Our extensive experiments and in-depth analyses show that our approach outperforms existing baselines in face recognition with child-adult pairs.

Code Contributors

Jungsoo Lee [Website] [LinkedIn] [Google Scholar] (KAIST AI)
Jooyeol Yun [LinkedIn] [Google Scholar] (KAIST AI)

Pytorch Implementation

Installation

Clone this repository.

git clone https://github.com/leebebeto/Inter-Prototype.git
cd Inter-Prototype
pip install -r requirements.txt
CUDA_VISIBLE_DEVICES=0 python3 train.py --data_mode=casia --exp=interproto_casia --wandb --tensorboard

How to Run

We used two different training datasets: 1) CASIA WebFace and 2) MS1M.

We constructed test sets with child-adult pairs with at least 20 years and 30 years age gaps using AgeDB and FG-NET, termed as AgeDB-C20, AgeDB-C30, FGNET-C20, and FGNET-C30. We also used LAG (Large Age Gap) dataset for the test set. For the age labels, we used the age annotations from MTLFace. The age annotations are available at this link. We provide a script file for downloading the test dataset.

sh scripts/download_test_data.sh

The final structure before training or testing the model should look like this.

train
 └ casia
   └ id1
     └ image1.jpg
     └ image2.jpg
     └ ...
   └ id2
     └ image1.jpg
     └ image2.jpg
     └ ...     
   ...
 └ ms1m
   └ id1
     └ image1.jpg
     └ image2.jpg
     └ ...
   └ id2
     └ image1.jpg
     └ image2.jpg
     └ ...     
   ...
 └ age-label
   └ casia-webface.txt
   └ ms1m.txt    
test
 └ AgeDB-aligned
   └ id1
     └ image1.jpg
     └ image2.jpg
   └ id2
     └ image1.jpg
     └ image2.jpg
   └ ...
 └ FGNET-aligned
   └ image1.jpg
   └ image2.jpg
   └ ...
 └ LAG-aligned
   └ id1
     └ image1.jpg
     └ image2.jpg
   └ id2
     └ image1.jpg
     └ image2.jpg
   └ ...

Pretrained Models

All models trained for our paper

Following are the checkpoints of each test set used in our paper.

Trained with Casia WebFace

AgeDB-C20
AgeDB-C30
FGNET-C20
FGNET-C30
LAG

Trained with MS1M

AgeDB-C20
AgeDB-C30
FGNET-C20
FGNET-C30
LAG

CUDA_VISIBLE_DEVICES=0 python3 evaluate.py --model_dir=<test_dir>

Quantitative / Qualitative Evaluation

Trained with CASIA WebFace dataset

Trained with MS1M dataset

t-SNE embedding of prototype vectors

Acknowledgments

Our pytorch implementation is heavily derived from InsightFace_Pytorch. Thanks for the implementation. We also deeply appreciate the age annotations provided by Huang et al. in MTLFace.

Owner
Jungsoo Lee
I'm interested in the intersection of Computer Vision and HCI.
Jungsoo Lee
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Kordel K. France 2 Nov 14, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022