Matplotlib Image labeller for classifying images

Overview

mpl-image-labeller

Binder Documentation Status

License PyPI Python Version

Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui!

For more see the documentation.

Install

pip install mpl-image-labeller

Key features

  • Simple interface
  • Uses keys instead of mouse
  • Only depends on Matplotlib
    • Works anywhere - from inside Jupyter to any supported GUI framework
  • Displays images with correct aspect ratio
  • Easily configurable keymap
  • Smart interactions with default Matplotlib keymap
  • Callback System (see examples/callbacks.py)

single class per image

gif of usage for labelling images of cats and dogs

multiple classes per image

gif of usage for labelling images of cats and dogs

Usage

import matplotlib.pyplot as plt
import numpy as np

from mpl_image_labeller import image_labeller

images = np.random.randn(5, 10, 10)
labeller = image_labeller(
    images, classes=["good", "bad", "meh"], label_keymap=["a", "s", "d"]
)
plt.show()

accessing the axis You can further modify the image (e.g. add masks over them) by using the plotting methods on axis object accessible by labeller.ax.

Lazy Loading Images If you want to lazy load your images you can provide a function to give the images. This function should take the integer idx as an argument and return the image that corresponds to that index. If you do this then you must also provide N_images in the constructor to let the object know how many images it should expect. See examples/lazy_loading.py for an example.

Controls

  • <- move one image back
  • -> move one image forward

To label images use the keys defined in the label_keymap argument - default 0, 1, 2...

Get the labels by accessing the labels property.

Overwriting default keymap

Matplotlib has default keybindings that it applied to all figures via rcparams.keymap that allow for actions such as s to save or q to quit. If you inlcude one of these keys as a shortcut for labelling as a class then that default keymap will be disabled for that figure.

Related Projects

This is not the first project to implement easy image labelling but seems to be the first to do so entirely in Matplotlib. The below projects implement varying degrees of complexity and/or additional features in different frameworks.

You might also like...
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening  images
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images.
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

Learning Continuous Image Representation with Local Implicit Image Function
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Comments
Releases(1.1.2)
  • 1.1.2(Nov 18, 2022)

  • 1.1.1(Nov 12, 2021)

    What's Changed

    • add github actions test by @ianhi in https://github.com/ianhi/mpl-image-labeller/pull/20
    • Autoscale cmaps + add tests by @ianhi in https://github.com/ianhi/mpl-image-labeller/pull/21
    • Updated callbacks example to show how to adjust overlay extent

    Full Changelog: https://github.com/ianhi/mpl-image-labeller/compare/1.1.0...1.1.1

    Source code(tar.gz)
    Source code(zip)
  • 1.1.0(Nov 1, 2021)

    What's Changed

    • Added ability for user to set the title https://github.com/ianhi/mpl-image-labeller/pull/15
    • Updated text positioning for single class labeller

    Full Changelog: https://github.com/ianhi/mpl-image-labeller/compare/1.0.0...1.1.0

    Source code(tar.gz)
    Source code(zip)
  • 1.0.0(Oct 30, 2021)

  • 0.5.0(Oct 29, 2021)

    • Fixed xlims getting messed up when zooming in https://github.com/ianhi/mpl-image-labeller/pull/9
    • Allow passing imshow_kwargs https://github.com/ianhi/mpl-image-labeller/commit/27afa0bf9633c5f59e2d3089f9fef789147e2b3c
    Source code(tar.gz)
    Source code(zip)
  • 0.4.0(Oct 29, 2021)

  • 0.3.0(Oct 27, 2021)

  • 0.2.0(Oct 27, 2021)

    Full Changelog: https://github.com/ianhi/mpl-image-labeller/compare/0.1.1...0.2.0

    Fixes:

    init_labels is respected

    new features:

    1. ax is not accesible through the .ax attribute
    2. images can now be a callable

    Thanks to @jrussell25 for suggesting these improvements

    Source code(tar.gz)
    Source code(zip)
  • 0.1.1(Oct 27, 2021)

Owner
Ian Hunt-Isaak
The embodiment of entropy - He/Him
Ian Hunt-Isaak
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Introduction This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Abstrac

Leo 21 Nov 23, 2022
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is

NTT Communication Science Laboratories 3 Dec 17, 2022
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023