The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Overview

Object-Placement-Assessment-Dataset-OPA

Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object placement. The foreground object should be placed at a reasonable location on the background considering location, size, occlusion, semantics, and etc.

Our dataset OPA is a synthesized dataset for Object Placement Assessment based on COCO dataset. We select unoccluded objects from multiple categories as our candidate foreground objects. The foreground objects are pasted on their compatible background images with random sizes and locations to form composite images, which are sent to human annotators for rationality labeling. Finally, we split the collected dataset into training set and test set, in which the background images and foreground objects have no overlap between training set and test set. We show some example positive and negative images in our dataset in the figure below.

Illustration of OPA dataset samples: Some positive and negative samples in our OPA dataset and the inserted foreground objects are marked with red outlines. Top row: positive samples; Bottom rows: negative samples, including objects with inappropriate size (e.g., f, g, h), without supporting force (e.g., i, j, k), appearing in the semantically unreasonable place (e.g., l, m, n), with unreasonable occlusion (e.g., o, p, q), and with inconsistent perspectives (e.g., r, s, t).

Our OPA dataset contains 62,074 training images and 11,396 test images, in which the foregrounds/backgrounds in training set and test set have no overlap. The training (resp., test) set contains 21,351 (resp.,3,566) positive samples and 40,724 (resp., 7,830) negative samples. Besides, the training (resp., test) set contains 2,701 (resp., 1,436) unrepeated foreground objects and1,236 (resp., 153) unrepeated background images. The OPA dataset is provided in Baidu Cloud (access code: qb1r) or Google Drive.

Prerequisites

  • Python

  • Pytorch

  • PIL

Getting Started

Installation

  • Clone this repo:

    git clone https://github.com/bcmi/Object-Placement-Assessment-Dataset-OPA.git
    cd Object-Placement-Assessment-Dataset-OPA
  • Download the OPA dataset. We show the file structure below:

    ├── background: 
         ├── category: 
                  ├── imgID.jpg
                  ├── ……
         ├── ……
    ├── foreground: 
         ├── category: 
                  ├── imgID.jpg
                  ├── mask_imgID.jpg
                  ├── ……
         ├── ……
    ├── composite: 
         ├── train_set: 
                  ├── fgimgID_bgimgID_x_y_w_h_scale_label.jpg
                  ├── mask_fgimgID_bgimgID_x_y_w_h_scale_label.jpg
                  ├── ……
         └── test_set: 
    ├── train_set.csv
    └── test_set.csv
    

    All backgrounds and foregrounds have their own IDs for identification. Each category of foregrounds and their compatible backgrounds are placed in one folder. The corresponding masks are placed in the same folder with a mask prefix.

    Four values are used to identify the location of a foreground in the background, including x y indicating the upper left corner of the foreground and w h indicating width and height. Scale is the maximum of fg_w/bg_w and fg_h/bg_h. The label (0 or 1) means whether the composite is reasonable in terms of the object placement.

    The training set and the test set each has a CSV file to record their information.

  • We also provide a script in /data_processing/ to generate composite images:

    python generate_composite.py
    

    After running the script, input the foreground ID, background ID, position, label, and storage path to generate your composite image.

Bibtex

If you find this work useful for your research, please cite our paper using the following BibTeX [arxiv]:

@article{liu2021OPA,
  title={OPA: Object Placement Assessment Dataset},
  author={Liu,Liu and Zhang,Bo and Li,Jiangtong and Niu,Li and Liu,Qingyang and Zhang,Liqing},
  journal={arXiv preprint arXiv:2107.01889},
  year={2021}
}
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
face property detection pytorch

This is the face property train code of project face-detection-project

i am x 2 Oct 18, 2021
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022