The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Overview

Object-Placement-Assessment-Dataset-OPA

Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object placement. The foreground object should be placed at a reasonable location on the background considering location, size, occlusion, semantics, and etc.

Our dataset OPA is a synthesized dataset for Object Placement Assessment based on COCO dataset. We select unoccluded objects from multiple categories as our candidate foreground objects. The foreground objects are pasted on their compatible background images with random sizes and locations to form composite images, which are sent to human annotators for rationality labeling. Finally, we split the collected dataset into training set and test set, in which the background images and foreground objects have no overlap between training set and test set. We show some example positive and negative images in our dataset in the figure below.

Illustration of OPA dataset samples: Some positive and negative samples in our OPA dataset and the inserted foreground objects are marked with red outlines. Top row: positive samples; Bottom rows: negative samples, including objects with inappropriate size (e.g., f, g, h), without supporting force (e.g., i, j, k), appearing in the semantically unreasonable place (e.g., l, m, n), with unreasonable occlusion (e.g., o, p, q), and with inconsistent perspectives (e.g., r, s, t).

Our OPA dataset contains 62,074 training images and 11,396 test images, in which the foregrounds/backgrounds in training set and test set have no overlap. The training (resp., test) set contains 21,351 (resp.,3,566) positive samples and 40,724 (resp., 7,830) negative samples. Besides, the training (resp., test) set contains 2,701 (resp., 1,436) unrepeated foreground objects and1,236 (resp., 153) unrepeated background images. The OPA dataset is provided in Baidu Cloud (access code: qb1r) or Google Drive.

Prerequisites

  • Python

  • Pytorch

  • PIL

Getting Started

Installation

  • Clone this repo:

    git clone https://github.com/bcmi/Object-Placement-Assessment-Dataset-OPA.git
    cd Object-Placement-Assessment-Dataset-OPA
  • Download the OPA dataset. We show the file structure below:

    ├── background: 
         ├── category: 
                  ├── imgID.jpg
                  ├── ……
         ├── ……
    ├── foreground: 
         ├── category: 
                  ├── imgID.jpg
                  ├── mask_imgID.jpg
                  ├── ……
         ├── ……
    ├── composite: 
         ├── train_set: 
                  ├── fgimgID_bgimgID_x_y_w_h_scale_label.jpg
                  ├── mask_fgimgID_bgimgID_x_y_w_h_scale_label.jpg
                  ├── ……
         └── test_set: 
    ├── train_set.csv
    └── test_set.csv
    

    All backgrounds and foregrounds have their own IDs for identification. Each category of foregrounds and their compatible backgrounds are placed in one folder. The corresponding masks are placed in the same folder with a mask prefix.

    Four values are used to identify the location of a foreground in the background, including x y indicating the upper left corner of the foreground and w h indicating width and height. Scale is the maximum of fg_w/bg_w and fg_h/bg_h. The label (0 or 1) means whether the composite is reasonable in terms of the object placement.

    The training set and the test set each has a CSV file to record their information.

  • We also provide a script in /data_processing/ to generate composite images:

    python generate_composite.py
    

    After running the script, input the foreground ID, background ID, position, label, and storage path to generate your composite image.

Bibtex

If you find this work useful for your research, please cite our paper using the following BibTeX [arxiv]:

@article{liu2021OPA,
  title={OPA: Object Placement Assessment Dataset},
  author={Liu,Liu and Zhang,Bo and Li,Jiangtong and Niu,Li and Liu,Qingyang and Zhang,Liqing},
  journal={arXiv preprint arXiv:2107.01889},
  year={2021}
}
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

NANSY: Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations Notice Papers' D

Dongho Choi 최동호 104 Dec 23, 2022
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022