GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

Overview

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles.

Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzalez, Christian Laugier

drawing

Introduction

This repository is code release for our GndNet paper accepted in International conference on Robotic Systems, IROS 2020. Link

Abstract

Ground plane estimation and ground point seg-mentation is a crucial precursor for many applications in robotics and intelligent vehicles like navigable space detection and occupancy grid generation, 3D object detection, point cloud matching for localization and registration for mapping. In this paper, we present GndNet, a novel end-to-end approach that estimates the ground plane elevation information in a grid-based representation and segments the ground points simultaneously in real-time. GndNet uses PointNet and Pillar Feature Encoding network to extract features and regresses ground height for each cell of the grid. We augment the SemanticKITTI dataset to train our network. We demonstrate qualitative and quantitative evaluation of our results for ground elevation estimation and semantic segmentation of point cloud. GndNet establishes a new state-of-the-art, achieves a run-time of 55Hz for ground plane estimation and ground point segmentation. drawing

Installation

We have tested the algorithm on the system with Ubuntu 18.04, 12 GB RAM and NVIDIA GTX-1080.

Dependencies

Python 3.6
CUDA (tested on 10.1)
PyTorch (tested on 1.4)
scipy
ipdb
argparse
numba

Visualization

For visualisation of the ground estimation, semantic segmentation of pointcloud, and easy integration with our real system we use Robot Operating System (ROS):

ROS
ros_numpy

Data Preparation

We train our model using the augmented SematicKITTI dataset. A sample data is provided in this repository, while the full dataset can be downloaded from link. We use the following procedure to generate our dataset:

  • We first crop the point cloud within the range of (x, y) = [(-50, -50), (50, 50)] and apply incremental rotation [-10, 10] degrees about the X and Y axis to generate data with varying slopes and uphills. (SemanticKITTI dataset is recorded with mostly flat terrain)
  • Augmented point cloud is stored as a NumPy file in the folder reduced_velo.
  • To generate ground elevation labels we then use the CRF-based surface fitting method as described in [1].
  • We subdivide object classes in SematicKITTI dataset into two categories
    1. Ground (road, sidewalk, parking, other-ground, vegetation, terrain)
    2. Non-ground (all other)
  • We filter out non-ground points from reduced_velo and use CRF-method [1] only with the ground points to generate an elevation map.
  • Our ground elevation is represented as a 2D grid with cell resolution 1m x 1m and of size (x, y) = [(-50, -50), (50, 50)], where values of each cell represent the local ground elevation.
  • Ground elevation map is stored as NumPy file in gnd_labels folder.
  • Finally, GndNet uses gnd_labels and reduced_velo (consisting of both ground and non-ground points) for training.

If you find the dataset useful consider citing our work and for queries regarding the dataset please contact the authors.

Training

To train the model update the data directory path in the config file: config_kittiSem.yaml

python main.py -s

It takes around 6 hours for the network to converge and model parameters would be stored in checkpoint.pth.tar file. A pre-trained model is provided in the trained_models folder it can be used to evaluate a sequence in the SemanticKITTI dataset.

python evaluate_SemanticKITTI.py --resume checkpoint.pth.tar --data_dir /home/.../kitti_semantic/dataset/sequences/07/

Using pre-trained model

Download the SemanticKITTI dataset from their website link. To visualize the output we use ROS and rviz. The predicted class (ground or non-ground) of the points in the point cloud is substituted in the intensity field of sensor_msgs.pointcloud. In the rviz use intensity as a color transformer to visualize segmented pointcloud. For the visualization of ground elevation, we use the ROS line marker.

roscore
rviz
python evaluate_SemanticKITTI.py --resume trained_models/checkpoint.pth.tar -v -gnd --data_dir /home/.../SemanticKITTI/dataset/sequences/00/

Note: The current version of the code for visualization is written in python which can be very slow specifically the generation of ROS marker. To only visualize segmentation output without ground elevation remove the -gnd flag.

Results

Semantic segmentation of point cloud ground (green) and non-ground (purple):

drawing

Ground elevation estimation:

drawing

YouTube video (Segmentation):

IMAGE ALT TEXT HERE

YouTube video (Ground Estimation):

IMAGE ALT TEXT HERE

TODO

  • Current dataloader loads the entire dataset into RAM first, this reduces training time but it can be hog systems with low RAM.
  • Speed up visualization of ground elevation. Write C++ code for ROS marker.
  • Create generalized ground elevation dataset to be with correspondence to SemanticKitti to be made public.

Citation

If you find this project useful in your research, please consider citing our work:

@inproceedings{paigwar2020gndnet,
  title={GndNet: Fast Ground Plane Estimation and Point Cloud Segmentation for Autonomous Vehicles},
  author={Paigwar, Anshul and Erkent, {\"O}zg{\"u}r and Gonz{\'a}lez, David Sierra and Laugier, Christian},
  booktitle={IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  year={2020}
}

Contribution

We welcome you for contributing to this repo, and feel free to contact us for any potential bugs and issues.

References

[1] L. Rummelhard, A. Paigwar, A. Nègre and C. Laugier, "Ground estimation and point cloud segmentation using SpatioTemporal Conditional Random Field," 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, 2017, pp. 1105-1110, doi: 10.1109/IVS.2017.7995861.

[2] Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., & Gall, J. (2019). SemanticKITTI: A dataset for semantic scene understanding of lidar sequences. In Proceedings of the IEEE International Conference on Computer Vision (pp. 9297-9307).

Owner
Anshul Paigwar
Research Engineer at Inria, Grenoble, France
Anshul Paigwar
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020

Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil

Xuefeng 5 Jan 15, 2022
HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton

HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton Wencan Cheng, Jae Hyun Park, Jong

cwc1260 23 Oct 21, 2022
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022
Machine Learning University: Accelerated Computer Vision Class

Machine Learning University: Accelerated Computer Vision Class This repository contains slides, notebooks, and datasets for the Machine Learning Unive

AWS Samples 1.3k Dec 28, 2022