A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

Overview

DGC-Net: Dense Geometric Correspondence Network

This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network"

TL;DR A CNN-based approach to obtain dense pixel correspondences between two views.

License

Shield: CC BY-NC-SA 4.0

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, available only for non-commercial use.

CC BY-NC-SA 4.0

Installation

  • create and activate conda environment with Python 3.x
conda create -n my_fancy_env python=3.7
source activate my_fancy_env
  • install Pytorch v1.0.0 and torchvision library
pip install torch torchvision
  • install all dependencies by running the following command:
pip install -r requirements.txt

Getting started

  • eval.py demonstrates the results on the HPatches dataset To be able to run eval.py script:

    • Download an archive with pre-trained models click and extract it to the project folder
    • Download HPatches dataset (Full image sequences). The dataset is available here at the end of the page
    • Run the following command:
    python eval.py --image-data-path /path/to/hpatches-geometry
    
  • train.py is a script to train DGC-Net/DGCM-Net model from scratch. To run this script, please follow the next procedure:

    python train.py --image-data-path /path/to/TokyoTimeMachine
    

Performance on HPatches dataset

Method / HPatches ID Viewpoint 1 Viewpoint 2 Viewpoint 3 Viewpoint 4 Viewpoint 5
PWC-Net 4.43 11.44 15.47 20.17 28.30
GM best model 9.59 18.55 21.15 27.83 35.19
DGC-Net (paper) 1.55 5.53 8.98 11.66 16.70
DGCM-Net (paper) 2.97 6.85 9.95 12.87 19.13
DGC-Net (repo) 1.74 5.88 9.07 12.14 16.50
DGCM-Net (repo) 2.33 5.62 9.55 11.59 16.48

Note: There is a difference in numbers presented in the original paper and obtained by the models of this repo. It might be related to the fact that both models (DGC-Net and DGCM-Net) have been trained using Pytorch v0.3.

More qualitative results are presented on the project page

How to cite

If you use this software in your own research, please cite our publication:

@inproceedings{Melekhov+Tiulpin+Sattler+Pollefeys+Rahtu+Kannala:2018,
      title = {{DGC-Net}: Dense geometric correspondence network},
      author = {Melekhov, Iaroslav and Tiulpin, Aleksei and 
               Sattler, Torsten, and 
               Pollefeys, Marc and 
               Rahtu, Esa and Kannala, Juho},
       year = {2019},
       booktitle = {Proceedings of the IEEE Winter Conference on 
                    Applications of Computer Vision (WACV)}
}
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
Cross-Task Consistency Learning Framework for Multi-Task Learning

Cross-Task Consistency Learning Framework for Multi-Task Learning Tested on numpy(v1.19.1) opencv-python(v4.4.0.42) torch(v1.7.0) torchvision(v0.8.0)

Aki Nakano 2 Jan 08, 2022