Python package for multiple object tracking research with focus on laboratory animals tracking.

Related tags

Deep Learningmotutils
Overview

Build Status

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking.

Features

  • loads:
  • saves: MOTChallenge CSV
  • Mot, BboxMot and PoseMot classes backed by xarray dataset with frame and id coordinates
  • export to Pandas DataFrame
  • oracle detector: fake all knowing detector based on ground truth with configurable inaccuracies
  • different classes of tracked objects: point, bounding box, pose
  • interpolation of missing positions
  • find mapping between MOT results and ground truth
  • visualization:
    • tracked positions / objects overlaid on a video
    • montage of multiple videos with results and/or ground truth
  • cli
    • visualization
    • evaluation ()
    • mot format conversion

visualization montage

Video comparison of multiple tracking methods and the ground truth.

Installation

pip install git+https://github.com/smidm/motutils

Usage

$ motutils --help
Usage: motutils [OPTIONS] COMMAND [ARGS]...

Options:
--load-mot FILENAME             load a MOT challenge csv file(s)
--load-gt FILENAME              load ground truth from a MOT challenge csv
file
--load-idtracker FILENAME       load IdTracker trajectories (e.g.,
trajectories.txt)
--load-idtrackerai FILENAME     load idtracker.ai trajectories (e.g.,
trajectories_wo_gaps.npy)
--load-sleap-analysis FILENAME  load SLEAP analysis trajectories (exported
from sleap-label File -> Export Analysis
HDF5)
--load-toxtrac FILENAME         load ToxTracker trajectories (e.g.,
Tracking_0.txt)
--toxtrac-topleft-xy 
   
    ...
position of the arena top left corner, see
first tuple in the Arena line in Stats_1.txt
--help                          Show this message and exit.

Commands:
convert    Convert any format to MOT Challenge format.
eval       Evaluate a single MOT file against the ground truth.
visualize  Visualize MOT file(s) overlaid on a video.

   
$ motutils convert --help

Usage: motutils convert [OPTIONS] OUTPUT_MOT

  Convert any format to MOT Challenge format.

$ motutils eval --help

Usage: motutils eval [OPTIONS]

  Evaluate a single MOT file against the ground truth.

Options:
  --write-eval FILENAME  write evaluation results as a CSV file
  --keypoint INTEGER     keypoint to use when evaluating pose MOT results
                         against point ground truth
$ motutils visualize --help

Usage: motutils visualize [OPTIONS] VIDEO_IN VIDEO_OUT
                          [SOURCE_DISPLAY_NAME]...

  Visualize MOT file(s) overlaid on a video.

Options:
  --limit-duration INTEGER  visualization duration limit in s
  --help                    Show this message and exit.

Python API Quickstart

>> mot.ds Dimensions: (frame: 4500, id: 5) Coordinates: * frame (frame) int64 0 1 2 3 4 5 6 ... 4494 4495 4496 4497 4498 4499 * id (id) int64 1 2 3 4 5 Data variables: x (frame, id) float64 434.5 277.7 179.2 ... 185.3 138.6 420.2 y (frame, id) float64 279.0 293.6 407.9 ... 393.3 387.2 294.7 width (frame, id) float64 nan nan nan nan nan ... nan nan nan nan nan height (frame, id) float64 nan nan nan nan nan ... nan nan nan nan nan confidence (frame, id) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0 >>> mot.num_ids() 5 >>> mot.count_missing() 0 >>> mot.get_object(frame=1, obj_id=2) Dimensions: () Coordinates: frame int64 1 id int64 2 Data variables: x float64 278.2 y float64 293.7 width float64 nan height float64 nan confidence float64 1.0 >>> mot.match_xy(frame=1, xy=(300, 300), maximal_match_distance=40) Dimensions: () Coordinates: frame int64 1 id int64 2 Data variables: x float64 278.2 y float64 293.7 width float64 nan height float64 nan confidence float64 1.0 >>> mot.to_dataframe() frame id x y width height confidence 0 1 1 434.5 279.0 -1.0 -1.0 1.0 1 1 2 277.7 293.6 -1.0 -1.0 1.0 2 1 3 179.2 407.9 -1.0 -1.0 1.0 3 1 4 180.0 430.0 -1.0 -1.0 1.0 4 1 5 155.0 397.0 -1.0 -1.0 1.0 ... .. ... ... ... ... ... 22495 4500 1 90.3 341.9 -1.0 -1.0 1.0 22496 4500 2 187.9 431.9 -1.0 -1.0 1.0 22497 4500 3 185.3 393.3 -1.0 -1.0 1.0 22498 4500 4 138.6 387.2 -1.0 -1.0 1.0 22499 4500 5 420.2 294.7 -1.0 -1.0 1.0 [22500 rows x 7 columns]">
>>> from motutils import Mot
>>> mot = Mot("tests/data/Sowbug3_cut.csv")

>>> mot.ds
<xarray.Dataset>
Dimensions:     (frame: 4500, id: 5)
Coordinates:
  * frame       (frame) int64 0 1 2 3 4 5 6 ... 4494 4495 4496 4497 4498 4499
  * id          (id) int64 1 2 3 4 5
Data variables:
    x           (frame, id) float64 434.5 277.7 179.2 ... 185.3 138.6 420.2
    y           (frame, id) float64 279.0 293.6 407.9 ... 393.3 387.2 294.7
    width       (frame, id) float64 nan nan nan nan nan ... nan nan nan nan nan
    height      (frame, id) float64 nan nan nan nan nan ... nan nan nan nan nan
    confidence  (frame, id) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0

>>> mot.num_ids()
5

>>> mot.count_missing()
0

>>> mot.get_object(frame=1, obj_id=2)
<xarray.Dataset>
Dimensions:     ()
Coordinates:
    frame       int64 1
    id          int64 2
Data variables:
    x           float64 278.2
    y           float64 293.7
    width       float64 nan
    height      float64 nan
    confidence  float64 1.0

>>> mot.match_xy(frame=1, xy=(300, 300), maximal_match_distance=40)
<xarray.Dataset>
Dimensions:     ()
Coordinates:
    frame       int64 1
    id          int64 2
Data variables:
    x           float64 278.2
    y           float64 293.7
    width       float64 nan
    height      float64 nan
    confidence  float64 1.0

>>> mot.to_dataframe()
       frame  id      x      y  width  height  confidence
0          1   1  434.5  279.0   -1.0    -1.0         1.0
1          1   2  277.7  293.6   -1.0    -1.0         1.0
2          1   3  179.2  407.9   -1.0    -1.0         1.0
3          1   4  180.0  430.0   -1.0    -1.0         1.0
4          1   5  155.0  397.0   -1.0    -1.0         1.0
      ...  ..    ...    ...    ...     ...         ...
22495   4500   1   90.3  341.9   -1.0    -1.0         1.0
22496   4500   2  187.9  431.9   -1.0    -1.0         1.0
22497   4500   3  185.3  393.3   -1.0    -1.0         1.0
22498   4500   4  138.6  387.2   -1.0    -1.0         1.0
22499   4500   5  420.2  294.7   -1.0    -1.0         1.0
[22500 rows x 7 columns]

Documentation

See the quickstart and tests for now.

Write me if you would like to use the package, but the lack of documentation is hindering you. You can easily reorder my priorities on this simply just by letting me know that there is an interest.

Owner
Matěj Šmíd
Matěj Šmíd
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Big Data and Multi-modal Computing Group, CRIPAC 75 Dec 30, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
It is a system used to detect bone fractures. using techniques deep learning and image processing

MohammedHussiengadalla-Intelligent-Classification-System-for-Bone-Fractures It is a system used to detect bone fractures. using techniques deep learni

Mohammed Hussien 7 Nov 11, 2022
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction

SUN Group @ UMN 28 Aug 03, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023