Python package for multiple object tracking research with focus on laboratory animals tracking.

Related tags

Deep Learningmotutils
Overview

Build Status

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking.

Features

  • loads:
  • saves: MOTChallenge CSV
  • Mot, BboxMot and PoseMot classes backed by xarray dataset with frame and id coordinates
  • export to Pandas DataFrame
  • oracle detector: fake all knowing detector based on ground truth with configurable inaccuracies
  • different classes of tracked objects: point, bounding box, pose
  • interpolation of missing positions
  • find mapping between MOT results and ground truth
  • visualization:
    • tracked positions / objects overlaid on a video
    • montage of multiple videos with results and/or ground truth
  • cli
    • visualization
    • evaluation ()
    • mot format conversion

visualization montage

Video comparison of multiple tracking methods and the ground truth.

Installation

pip install git+https://github.com/smidm/motutils

Usage

$ motutils --help
Usage: motutils [OPTIONS] COMMAND [ARGS]...

Options:
--load-mot FILENAME             load a MOT challenge csv file(s)
--load-gt FILENAME              load ground truth from a MOT challenge csv
file
--load-idtracker FILENAME       load IdTracker trajectories (e.g.,
trajectories.txt)
--load-idtrackerai FILENAME     load idtracker.ai trajectories (e.g.,
trajectories_wo_gaps.npy)
--load-sleap-analysis FILENAME  load SLEAP analysis trajectories (exported
from sleap-label File -> Export Analysis
HDF5)
--load-toxtrac FILENAME         load ToxTracker trajectories (e.g.,
Tracking_0.txt)
--toxtrac-topleft-xy 
   
    ...
position of the arena top left corner, see
first tuple in the Arena line in Stats_1.txt
--help                          Show this message and exit.

Commands:
convert    Convert any format to MOT Challenge format.
eval       Evaluate a single MOT file against the ground truth.
visualize  Visualize MOT file(s) overlaid on a video.

   
$ motutils convert --help

Usage: motutils convert [OPTIONS] OUTPUT_MOT

  Convert any format to MOT Challenge format.

$ motutils eval --help

Usage: motutils eval [OPTIONS]

  Evaluate a single MOT file against the ground truth.

Options:
  --write-eval FILENAME  write evaluation results as a CSV file
  --keypoint INTEGER     keypoint to use when evaluating pose MOT results
                         against point ground truth
$ motutils visualize --help

Usage: motutils visualize [OPTIONS] VIDEO_IN VIDEO_OUT
                          [SOURCE_DISPLAY_NAME]...

  Visualize MOT file(s) overlaid on a video.

Options:
  --limit-duration INTEGER  visualization duration limit in s
  --help                    Show this message and exit.

Python API Quickstart

>> mot.ds Dimensions: (frame: 4500, id: 5) Coordinates: * frame (frame) int64 0 1 2 3 4 5 6 ... 4494 4495 4496 4497 4498 4499 * id (id) int64 1 2 3 4 5 Data variables: x (frame, id) float64 434.5 277.7 179.2 ... 185.3 138.6 420.2 y (frame, id) float64 279.0 293.6 407.9 ... 393.3 387.2 294.7 width (frame, id) float64 nan nan nan nan nan ... nan nan nan nan nan height (frame, id) float64 nan nan nan nan nan ... nan nan nan nan nan confidence (frame, id) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0 >>> mot.num_ids() 5 >>> mot.count_missing() 0 >>> mot.get_object(frame=1, obj_id=2) Dimensions: () Coordinates: frame int64 1 id int64 2 Data variables: x float64 278.2 y float64 293.7 width float64 nan height float64 nan confidence float64 1.0 >>> mot.match_xy(frame=1, xy=(300, 300), maximal_match_distance=40) Dimensions: () Coordinates: frame int64 1 id int64 2 Data variables: x float64 278.2 y float64 293.7 width float64 nan height float64 nan confidence float64 1.0 >>> mot.to_dataframe() frame id x y width height confidence 0 1 1 434.5 279.0 -1.0 -1.0 1.0 1 1 2 277.7 293.6 -1.0 -1.0 1.0 2 1 3 179.2 407.9 -1.0 -1.0 1.0 3 1 4 180.0 430.0 -1.0 -1.0 1.0 4 1 5 155.0 397.0 -1.0 -1.0 1.0 ... .. ... ... ... ... ... 22495 4500 1 90.3 341.9 -1.0 -1.0 1.0 22496 4500 2 187.9 431.9 -1.0 -1.0 1.0 22497 4500 3 185.3 393.3 -1.0 -1.0 1.0 22498 4500 4 138.6 387.2 -1.0 -1.0 1.0 22499 4500 5 420.2 294.7 -1.0 -1.0 1.0 [22500 rows x 7 columns]">
>>> from motutils import Mot
>>> mot = Mot("tests/data/Sowbug3_cut.csv")

>>> mot.ds
<xarray.Dataset>
Dimensions:     (frame: 4500, id: 5)
Coordinates:
  * frame       (frame) int64 0 1 2 3 4 5 6 ... 4494 4495 4496 4497 4498 4499
  * id          (id) int64 1 2 3 4 5
Data variables:
    x           (frame, id) float64 434.5 277.7 179.2 ... 185.3 138.6 420.2
    y           (frame, id) float64 279.0 293.6 407.9 ... 393.3 387.2 294.7
    width       (frame, id) float64 nan nan nan nan nan ... nan nan nan nan nan
    height      (frame, id) float64 nan nan nan nan nan ... nan nan nan nan nan
    confidence  (frame, id) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0

>>> mot.num_ids()
5

>>> mot.count_missing()
0

>>> mot.get_object(frame=1, obj_id=2)
<xarray.Dataset>
Dimensions:     ()
Coordinates:
    frame       int64 1
    id          int64 2
Data variables:
    x           float64 278.2
    y           float64 293.7
    width       float64 nan
    height      float64 nan
    confidence  float64 1.0

>>> mot.match_xy(frame=1, xy=(300, 300), maximal_match_distance=40)
<xarray.Dataset>
Dimensions:     ()
Coordinates:
    frame       int64 1
    id          int64 2
Data variables:
    x           float64 278.2
    y           float64 293.7
    width       float64 nan
    height      float64 nan
    confidence  float64 1.0

>>> mot.to_dataframe()
       frame  id      x      y  width  height  confidence
0          1   1  434.5  279.0   -1.0    -1.0         1.0
1          1   2  277.7  293.6   -1.0    -1.0         1.0
2          1   3  179.2  407.9   -1.0    -1.0         1.0
3          1   4  180.0  430.0   -1.0    -1.0         1.0
4          1   5  155.0  397.0   -1.0    -1.0         1.0
      ...  ..    ...    ...    ...     ...         ...
22495   4500   1   90.3  341.9   -1.0    -1.0         1.0
22496   4500   2  187.9  431.9   -1.0    -1.0         1.0
22497   4500   3  185.3  393.3   -1.0    -1.0         1.0
22498   4500   4  138.6  387.2   -1.0    -1.0         1.0
22499   4500   5  420.2  294.7   -1.0    -1.0         1.0
[22500 rows x 7 columns]

Documentation

See the quickstart and tests for now.

Write me if you would like to use the package, but the lack of documentation is hindering you. You can easily reorder my priorities on this simply just by letting me know that there is an interest.

Owner
Matěj Šmíd
Matěj Šmíd
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 08, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
202 Jan 06, 2023
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022