My implementation of Image Inpainting - A deep learning Inpainting model

Overview

Image Inpainting

What is Image Inpainting

Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within images. Typically, this process is done by professionals who use software to change the image to remove the imperfection painstakingly. A deep learning approach bypasses manual labor typically used in this process and applies a neural network to determine the proper fill for the parts of the image.

Examples

To see a higher quality version, click on the images

From left to right: original, interpolated, predicted

alt text alt text

Reasearch and Development

The model architecture is created using a fully convolutional deep residual network. I had pretty good intuition that this type of model would work, as it had on my previous projects for image restoration. I looked into other architectures such as UNET for inpainting but ran into troubles while implementing them.

First, UNET requires you to splice images during inference, meaning that the image splice had to be larger than the white space that the user is trying to inpaint. For example, if the splices you set up for inference were set up to take 64x64 chunks of the image and you managed to get whitespace that fully engulfed this splice, feeding this into the model would result in improper pixels due to the model not having any reference. This would require a different architecture that would detect the size of the white space for images so that you could adequately select the image splice size.

The following architecture I looked into and tried implementing was a GAN (Generative Adversarial Network) based model. I've experimented with GANs and implemented a model that could generate faces using images from the CelebA dataset; however, using GANs for Inpainting proved a much more complex problem. There are issues that I faced with proper ratios of the loss functions being L1 loss and the adversarial loss of the discriminator. Although a GAN-based model would likely drastically improve the output during inference, I could not tune the hyper-parameters enough to balance both the loss functions and the training of the generator and discriminator.

I resolved to use the current architecture described due to its simplicity and relatively adequate results.

Model Architecture

Methods Depth Filters Parameters Training Time
Inpaint Model 50 (49 layers) 192-3 15,945k ~30hrs

Network Architecture:

How do you use this model?

Due to the sheer size of this model, I can't fully upload it onto GitHub. Instead, I have opted to upload it via Google Drive, where you should be able to download it. Place this download '.h5' file and place it inside the 'weights/' directory.

How can you train your own model?

The model is instantiated within network.py. You can play around with hyper-parameters there. First, to train the model, delete the images currently within data/ put your training image data within that file - any large dataset such as ImageNet or an equivalent should work. Finally, mess with hyper-parameters in train.py and run train.py. If you’re training on weaker hardware, I’d recommend lowering the batch_size below the currently set 4 images.

Qualitative Examples (click on the images for higher quality):

Set 5 Evaluation Set:

Images Left to Right: Original, Interpolated, Predicted alt text alt text alt text alt text

Hardware - Training Statistics

Trained on 3070 ti
Batch Size: 4
Training Image Size: 96x96

Author

Joshua Evans - github/JoshVEvans
Owner
Joshua V Evans
Computer Systems Engineering | Arizona State University '25 | Interested in creating intelligent machines
Joshua V Evans
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.

FCPS Fundamental Clustering Problems Suite The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning pu

9 Nov 27, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023