My implementation of Image Inpainting - A deep learning Inpainting model

Overview

Image Inpainting

What is Image Inpainting

Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within images. Typically, this process is done by professionals who use software to change the image to remove the imperfection painstakingly. A deep learning approach bypasses manual labor typically used in this process and applies a neural network to determine the proper fill for the parts of the image.

Examples

To see a higher quality version, click on the images

From left to right: original, interpolated, predicted

alt text alt text

Reasearch and Development

The model architecture is created using a fully convolutional deep residual network. I had pretty good intuition that this type of model would work, as it had on my previous projects for image restoration. I looked into other architectures such as UNET for inpainting but ran into troubles while implementing them.

First, UNET requires you to splice images during inference, meaning that the image splice had to be larger than the white space that the user is trying to inpaint. For example, if the splices you set up for inference were set up to take 64x64 chunks of the image and you managed to get whitespace that fully engulfed this splice, feeding this into the model would result in improper pixels due to the model not having any reference. This would require a different architecture that would detect the size of the white space for images so that you could adequately select the image splice size.

The following architecture I looked into and tried implementing was a GAN (Generative Adversarial Network) based model. I've experimented with GANs and implemented a model that could generate faces using images from the CelebA dataset; however, using GANs for Inpainting proved a much more complex problem. There are issues that I faced with proper ratios of the loss functions being L1 loss and the adversarial loss of the discriminator. Although a GAN-based model would likely drastically improve the output during inference, I could not tune the hyper-parameters enough to balance both the loss functions and the training of the generator and discriminator.

I resolved to use the current architecture described due to its simplicity and relatively adequate results.

Model Architecture

Methods Depth Filters Parameters Training Time
Inpaint Model 50 (49 layers) 192-3 15,945k ~30hrs

Network Architecture:

How do you use this model?

Due to the sheer size of this model, I can't fully upload it onto GitHub. Instead, I have opted to upload it via Google Drive, where you should be able to download it. Place this download '.h5' file and place it inside the 'weights/' directory.

How can you train your own model?

The model is instantiated within network.py. You can play around with hyper-parameters there. First, to train the model, delete the images currently within data/ put your training image data within that file - any large dataset such as ImageNet or an equivalent should work. Finally, mess with hyper-parameters in train.py and run train.py. If you’re training on weaker hardware, I’d recommend lowering the batch_size below the currently set 4 images.

Qualitative Examples (click on the images for higher quality):

Set 5 Evaluation Set:

Images Left to Right: Original, Interpolated, Predicted alt text alt text alt text alt text

Hardware - Training Statistics

Trained on 3070 ti
Batch Size: 4
Training Image Size: 96x96

Author

Joshua Evans - github/JoshVEvans
Owner
Joshua V Evans
Computer Systems Engineering | Arizona State University '25 | Interested in creating intelligent machines
Joshua V Evans
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
Implementations of polygamma, lgamma, and beta functions for PyTorch

lgamma Implementations of polygamma, lgamma, and beta functions for PyTorch. It's very hacky, but that's usually ok for research use. To build, run: .

Rachit Singh 24 Nov 09, 2021
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022