Neural Dynamic Policies for End-to-End Sensorimotor Learning

Overview

Neural Dynamic Policies for End-to-End Sensorimotor Learning

In NeurIPS 2020 (Spotlight) [Project Website] [Project Video]

Shikhar Bahl, Mustafa Mukadam, Abhinav Gupta, Deepak Pathak
Carnegie Mellon University & Facebook AI Research

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning. In this work, we begin to close this gap and embed dynamics structure into deep neural network-based policies by reparameterizing action spaces with differential equations. We propose Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution space as opposed to prior policy learning methods where action represents the raw control space. The embedded structure allow us to perform end-to-end policy learning under both reinforcement and imitation learning setups. If you find this work useful in your research, please cite:

  @inproceedings{bahl2020neural,
    Author = { Bahl, Shikhar and Mukadam, Mustafa and
    Gupta, Abhinav and Pathak, Deepak},
    Title = {Neural Dynamic Policies for End-to-End Sensorimotor Learning},
    Booktitle = {NeurIPS},
    Year = {2020}
  }

1) Installation and Usage

  1. This code is based on PyTorch. This code needs MuJoCo 1.5 to run. To install and setup the code, run the following commands:
#create directory for data and add dependencies
cd neural-dynamic-polices; mkdir data/
git clone https://github.com/rll/rllab.git
git clone https://github.com/openai/baselines.git

#create virtual env
conda create --name ndp python=3.5
source activate ndp

#install requirements
pip install -r requirements.txt
#OR try
conda env create -f ndp.yaml
  1. Training imitation learning
cd neural-dynamic-polices
# name of the experiment
python main_il.py --name NAME
  1. Training RL: run the script run_rl.sh. ENV_NAME is the environment (could be throw, pick, push, soccer, faucet). ALGO-TYPE is the algorithm (dmp for NDPs, ppo for PPO [Schulman et al., 2017] and ppo-multi for the multistep actor-critic architecture we present in our paper).
sh run_rl.sh ENV_NAME ALGO-TYPE EXP_ID SEED
  1. In order to visualize trained models/policies, use the same exact arguments as used for training but call vis_policy.sh
  sh vis_policy.sh ENV_NAME ALGO-TYPE EXP_ID SEED

2) Other helpful pointers

3) Acknowledgements

We use the PPO infrastructure from: https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail. We use environment code from: https://github.com/dibyaghosh/dnc/tree/master/dnc/envs, https://github.com/rlworkgroup/metaworld, https://github.com/vitchyr/multiworld. We use pytorch and RL utility functions from: https://github.com/vitchyr/rlkit. We use the DMP skeleton code from https://github.com/abr-ijs/imednet, https://github.com/abr-ijs/digit_generator. We also use https://github.com/rll/rllab.git and https://github.com/openai/baselines.git.

Owner
Shikhar Bahl
AI Researcher at CMU (PhD, Robotics Institute) interested in deep RL, machine learning, robotics and optimization
Shikhar Bahl
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.

MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learnin

119 Jan 04, 2023
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022