Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Overview

Realistic Full-Body Anonymization with Surface-Guided GANs

This is the official source code for the paper "Realistic Full-Body Anonymization with Surface-Guided GANs".

[Arixv Paper] [Appendix]

Surface-guided GANs is an automatic full-body anonymization technique based on Generative Adversarial Networks.

The key idea of surface-guided GANs is to guide the generative model with dense pixel-to-surface information (based on continuous surface embeddings). This yields highly realistic anonymization result and allows for diverse anonymization.

Requirements

  • Pytorch >= 1.9
  • Torchvision >= 0.11
  • Python >= 3.8
  • CUDA capable device for training. Training was done with 1-4 32GB V100 GPUs.

Installation

We recommend to setup and install pytorch with anaconda following the pytorch installation instructions.

  1. Clone repository: git clone https://github.com/hukkelas/full_body_anonymization/.
  2. Install using setup.py:
pip install -e .

Test the model

The file anonymize.py can anonymize image paths, directories and videos. python anonymize.py --help prints the different options.

To anonymize, visualize and save an output image, you can write:

python3 anonymize.py configs/surface_guided/configE.py coco_val2017_000000001000.jpg --visualize --save

The truncation value decides the "creativity" of the generator, which you can specify in the range (0, 1). Setting -t 1 will generate diverse anonymization between individuals in the image. We recommend to set it to t=0.5 to tradeoff between quality and diversity.

python3 anonymize.py configs/surface_guided/configE.py coco_val2017_000000001000.jpg --visualize --save -t 1

Pre-trained models

Current release includes a pre-trained model for ConfigE from the main paper. More pre-trained models will be released later.

Train the model

Instructions to train and reproduce results from the paper will be released by January 14th 2022.

License

All code, except the stated below, is released under MIT License.

Code under has are provided with other licenses:

Citation

If you use this code for your research, please cite:

@misc{hukkelås2022realistic,
      title={Realistic Full-Body Anonymization with Surface-Guided GANs}, 
      author={Håkon Hukkelås and Morten Smebye and Rudolf Mester and Frank Lindseth},
      year={2022},
      eprint={2201.02193},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Håkon Hukkelås
Interested in generative models, autonomous vehicles and other deep learning areas.
Håkon Hukkelås
RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations.

Randomised controlled trial abstract result tabulator RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into

2 Sep 16, 2022
[WWW 2021] Source code for "Graph Contrastive Learning with Adaptive Augmentation"

GCA Source code for Graph Contrastive Learning with Adaptive Augmentation (WWW 2021) For example, to run GCA-Degree under WikiCS, execute: python trai

Big Data and Multi-modal Computing Group, CRIPAC 97 Jan 07, 2023
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
Sudoku solver - A sudoku solver with python

sudoku_solver A sudoku solver What is Sudoku? Sudoku (Japanese: 数独, romanized: s

Sikai Lu 0 May 22, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022