A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Overview

Welcome to Carbon Insight

Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other participants in the community. Our mission is to visualize the world's most cutting-edge research on carbon emission, carbon sink, and carbon flux to generate insights of carbon and society. We strive to accelerate climate studies and global climate actions with computational innovations.

With the global consensus of the 1.5°C goal of the Paris Agreement, the world has a goal to achieve carbon neutralization by 2050. This ambitious goal requires collaboration from all fields. To tackle the climate crisis together, we must first understand where carbon comes from and where it goes.

With Carbon Insight, you can work with the world's most updated carbon-related data and generate insights as you wish.

For example, in our first release, you can leverage the dataset provided by Carbon Monitor, to have a daily anthropogenic CO2 emission estimation by country and sector since January 2019.

Carbon Insight also lets you observe and track correlations between global carbon emissions and socioeconomic factors such as COVID-19 and GDP.

We aim to achieve the following goals:

  • Using data visualization to support scientific research, allowing researchers to identify problems and ideas that are not easily seen in conventional ways
  • Acting as a tool that allows all users to explore carbon neutralization pathways under different scenarios and with technology innovations
  • Illustrating data and science of carbon neutralization for the non-professionals to raise public awareness towards climate change

How to use

Using Carbon Monitor, a dataset providing daily estimations of CO2 emissions by country/sector, as an example, we demonstrate two ways to do analysis with carbon-related data:

  • interactable Power BI reports, and
  • code examples

If you want a straightforward view of a global emission map by country, you can download our Power BI reports and filter results based on your interest.

(New to Power BI? Check the instructions on how to download the Power BI app and how to explore with dashboards, reports, and apps in Power BI.)

If you have some basic coding knowledge and want to get your hands dirty customizing your own analysis or combining different datasets to scale your research, go to our Jupyter Notebook Tutorials and walk through the code examples we provide on how to acquire, process and visualize carbon-related data.

Release Note

2022/01/06 release:

Contributors

Carbon Insight started with a research collaboration between MSRA and Zhu Liu's team from Department of Earth System Science, Tsinghua University. We share a vision of demonstrating efforts towards carbon neutralization through visualization, benchmarking, and insightful analysis with both global consistency and local detail. Our collaboration goes wider to more areas of carbon footprint monitoring and deeper to using advanced machine learning algorithms to assist the modeling of carbon flux.

We're a fully open project and welcome contributors or collaborators from the whole community, if you wish to contribute to the project or raise suggestions, contact us at [email protected].

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the Machine Learning 4 Health Workshop

Detection-aided liver lesion segmentation Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the

Image Processing Group - BarcelonaTECH - UPC 96 Oct 26, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals"

The Temporal Robustness of Stochastic Signals Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals" Case stud

0 Oct 28, 2021
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022