A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Overview

Welcome to Carbon Insight

Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other participants in the community. Our mission is to visualize the world's most cutting-edge research on carbon emission, carbon sink, and carbon flux to generate insights of carbon and society. We strive to accelerate climate studies and global climate actions with computational innovations.

With the global consensus of the 1.5°C goal of the Paris Agreement, the world has a goal to achieve carbon neutralization by 2050. This ambitious goal requires collaboration from all fields. To tackle the climate crisis together, we must first understand where carbon comes from and where it goes.

With Carbon Insight, you can work with the world's most updated carbon-related data and generate insights as you wish.

For example, in our first release, you can leverage the dataset provided by Carbon Monitor, to have a daily anthropogenic CO2 emission estimation by country and sector since January 2019.

Carbon Insight also lets you observe and track correlations between global carbon emissions and socioeconomic factors such as COVID-19 and GDP.

We aim to achieve the following goals:

  • Using data visualization to support scientific research, allowing researchers to identify problems and ideas that are not easily seen in conventional ways
  • Acting as a tool that allows all users to explore carbon neutralization pathways under different scenarios and with technology innovations
  • Illustrating data and science of carbon neutralization for the non-professionals to raise public awareness towards climate change

How to use

Using Carbon Monitor, a dataset providing daily estimations of CO2 emissions by country/sector, as an example, we demonstrate two ways to do analysis with carbon-related data:

  • interactable Power BI reports, and
  • code examples

If you want a straightforward view of a global emission map by country, you can download our Power BI reports and filter results based on your interest.

(New to Power BI? Check the instructions on how to download the Power BI app and how to explore with dashboards, reports, and apps in Power BI.)

If you have some basic coding knowledge and want to get your hands dirty customizing your own analysis or combining different datasets to scale your research, go to our Jupyter Notebook Tutorials and walk through the code examples we provide on how to acquire, process and visualize carbon-related data.

Release Note

2022/01/06 release:

Contributors

Carbon Insight started with a research collaboration between MSRA and Zhu Liu's team from Department of Earth System Science, Tsinghua University. We share a vision of demonstrating efforts towards carbon neutralization through visualization, benchmarking, and insightful analysis with both global consistency and local detail. Our collaboration goes wider to more areas of carbon footprint monitoring and deeper to using advanced machine learning algorithms to assist the modeling of carbon flux.

We're a fully open project and welcome contributors or collaborators from the whole community, if you wish to contribute to the project or raise suggestions, contact us at [email protected].

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Alex Pashevich 62 Dec 24, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022