A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Overview

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge

This is a platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Change Log

  • 2022-05-16: improved engine backend (Linux) with better stability (v1.0)
    • Check out Supported Platforms for download links.
    • Make sure to update to the latest version of the engine if you would like to use depth map or enemy state features.
  • 2022-05-18: updated engine backend for Windows and MacOS (v1.0)

Competition Overview

With a focus on learning intelligent agents in open-world games, this year we are hosting a new contest called Wilderness Scavenger. In this new game, which features a Battle Royale-style 3D open-world gameplay experience and a random PCG-based world generation, participants must learn agents that can perform subtasks common to FPS games, such as navigation, scouting, and skirmishing. To win the competition, agents must have strong perception of complex 3D environments and then learn to exploit various environmental structures (such as terrain, buildings, and plants) by developing flexible strategies to gain advantages over other competitors. Despite the difficulty of this goal, we hope that this new competition can serve as a cornerstone of research in AI-based gaming for open-world games.

Features

  • A light-weight 3D open-world FPS game developed with Unity3D game engine
  • Rendering-off game acceleration for fast training and evaluation
  • Large open world environment providing high freedom of agent behaviors
  • Highly customizable game configuration with random supply distribution and dynamic refresh
  • PCG-based map generation with randomly spawned buildings, plants and obstacles (100 training maps)
  • Interactive replay tool for game record visualization

Basic Structures

We developed this repository to provide a training and evaluation platform for the researchers interested in open-world FPS game AI. For getting started quickly, a typical workspace structure when using this repository can be summarized as follows:

.
├── examples  # providing starter code examples and training baselines
│   ├── envs/...
│   ├── basic.py
│   ├── basic_track1_navigation.py
│   ├── basic_track2_supply_gather.py
│   ├── basic_track3_supply_battle.py
│   ├── baseline_track1_navigation.py
│   ├── baseline_track2_supply_gather.py
│   └── baseline_track3_supply_battle.py
├── inspirai_fps  # the game play API source code
│   ├── lib/...
│   ├── __init__.py
│   ├── gamecore.py
│   ├── raycast_manager.py
│   ├── simple_command_pb2.py
│   ├── simple_command_pb2_grpc.py
│   └── utils.py
└── fps_linux  # the engine backend (Linux)
    ├── UnityPlayer.so
    ├── fps.x86_64
    ├── fps_Data/...
    └── logs/...
  • fps_linux (requires to be manually downloaded and unzipped to your working directory): the (Linux) engine backend extracted from our game development project, containing all the game related assets, binaries and source codes.
  • inspirai_fps: the python gameplay API for agent training and testing, providing the core Game class and other useful tool classes and functions.
  • examples: we provide basic starter codes for each game mode targeting each track of the challenge, and we also give out our implementation of some baseline solutions based on ray.rllib reinforcement learning framework.

Supported Platforms

We support the multiple platforms with different engine backends, including:

Installation (from source)

To use the game play API, you need to first install the package inspirai_fps by following the commands below:

git clone https://github.com/inspirai/wilderness-scavenger
cd wilderness-scavenger
pip install .

We recommend installing this package with python 3.8 (which is our development environment), so you may first create a virtual env using conda and finish installation:

$ conda create -n WildScav python=3.8
$ conda activate WildScav
(WildScav) $ pip install .

Installation (from PyPI)

Note: this may not be maintained in time. We strongly recommend using the installation method above

Alternatively, you can install the package from PyPI directly. But note that this will only install the gameplay API inspirai_fps, not the backend engine. So you still need to manually download the correct engine backend from the Supported Platfroms section.

pip install inspirai-fps

Loading Engine Backend

To successfully run the game, you need to make sure the game engine backend for your platform is downloaded and set the engine_dir parameter of the Game init function correctly. For example, here is a code snippet in the script example/basic.py:

from inspirai_fps import Game, ActionVariable
...
parser.add_argument("--engine-dir", type=str, default="../fps_linux")
...
game = Game(..., engine_dir=args.engine_dir, ...)

Loading Map Data

To get access to some features like realtime depth map computation or randomized player spawning, you need to load the map data and load them into the Game. After this, once you turn on the depth map rendering, the game server will automatically compute a depth map viewing from the player's first person perspective at each time step.

  1. Download map data from Google Drive or Feishu and decompress the downloaded file to your preferred directory (e.g., <WORKDIR>/map_data).
  2. Set map_dir parameter of the Game initializer accordingly
  3. Set the map_id as you like
  4. Turn on the function of depth map computation
  5. Turn on random start location to spawn agents at random places

Read the following code snippet in the script examples/basic.py as an example:

from inspirai_fps import Game, ActionVariable
...
parser.add_argument("--map-id", type=int, default=1)
parser.add_argument("--use-depth-map", action="store_true")
parser.add_argument("--random-start-location", action="store_true")
parser.add_argument("--map-dir", type=str, default="../map_data")
...
game = Game(map_dir=args.map_dir, ...)
game.set_map_id(args.map_id)  # this will load the valid locations of the specified map
...
if args.use_depth_map:
    game.turn_on_depth_map()
    game.set_depth_map_size(380, 220, 200)  # width (pixels), height (pixels), depth_limit (meters)
...
if args.random_start_location:
    for agent_id in range(args.num_agents):
        game.random_start_location(agent_id, indoor=False)  # this will randomly spawn the player at a valid outdoor location, or indoor location if indoor is True
...
game.new_episode()  # start a new episode, this will load the mesh of the specified map

Gameplay Visualization

We have also developed a replay visualization tool based on the Unity3D game engine. It is similar to the spectator mode common in multiplayer FPS games, which allows users to interactively follow the gameplay. Users can view an agent's action from different perspectives and also switch between multiple agents or different viewing modes (e.g., first person, third person, free) to see the entire game in a more immersive way. Participants can download the tool for their specific platforms here:

To use this tool, follow the instruction below:

  • Decompress the downloaded file to anywhere you prefer.
  • Turn on recording function with game.turn_on_record(). One record file will be saved at the end of each episode.

Find the replay files under the engine directory according to your platform:

  • Linux: <engine_dir>/fps_Data/StreamingAssets/Replay
  • Windows: <engine_dir>\FPSGameUnity_Data\StreamingAssets\Replay
  • MacOS: <engine_dir>/Contents/Resources/Data/StreamingAssets/Replay

Copy replay files you want to the replay tool directory according to your platform and start the replay tool.

For Windows users:

  • Copy the replay file (e.g. xxx.bin) into <replayer_dir>/FPSGameUnity_Data/StreamingAssets/Replay
  • Run FPSGameUnity.exe to start the application.

For MacOS users:

  • Copy the replay file (e.g. xxx.bin) into <replayer_dir>/Contents/Resources/Data/StreamingAssets/Replay
  • Run fps.app to start the application.

In the replay tool, you can:

  • Select the record you want to watch from the drop-down menu and click PLAY to start playing the record.
  • During the replay, users can make the following operations
    • Press Tab: pause or resume
    • Press E: switch observation mode (between first person, third person, free)
    • Press Q: switch between multiple agents
    • Press ECS: stop replay and return to the main menu
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.

ChongjianGE 89 Dec 02, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Jian Zhang 20 Oct 24, 2022
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023