Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Overview

Gender-classification

Machine Learning

This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and Sklearn are used In this.

Data set credits: Kaggle.com

1. Importing Libraries

import pandas as pd
import sklearn
import numpy as np
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.ensemble import VotingClassifier,RandomForestClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt

2. Loading Data and exploring data

data = pd.read_csv("L:\Gender classification\gender_classification_v7.csv")
data.head(20)
#checking for null values
data.isnull().sum()
data.describe()

Visualizing physical characters & diffrences using Graphs and plots

#visualising forehead length data
sns.lineplot(data['forehead_width_cm'],data['forehead_height_cm'], hue=data["gender"])

Graph

#visualising nose length data
sns.lineplot(data['nose_long'],data['nose_wide'], hue=data["gender"])

Graph

3. Encoding data and splitting data

twogender = {'Female':0, 'Male':1}
data['gender'] = data['gender'].map(twogender)

X = data.drop('gender', axis=1)
y = data['gender']

#splitting data for testing and traing process
from sklearn.model_selection import train_test_split, GridSearchCV
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3)
print(X_train.shape)
print(X_val.shape)
print(y_train.shape)
print(y_val.shape)

Now we will test diffrent Sklearn Models to find best accuracy

4. Importing All required prerequisites

from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, plot_confusion_matrix
from sklearn.ensemble import RandomForestClassifier

5. Decision tree-classifier

dt = DecisionTreeClassifier(random_state=0)

dt.fit(X_train, y_train)
dt_pred = dt.predict(X_val)
dt_acc = accuracy_score(y_val, dt_pred)
print('Accuracy of Decision Tree is: {:.2f}%'.format(dt_acc*100))

6. RandomforestClassifier

rf = RandomForestClassifier(random_state=0)

rf.fit(X_train, y_train)
rf_pred = rf.predict(X_val)
rf_acc = accuracy_score(y_val, rf_pred)
print('Accuracy of Random Forest is: {:.2f}%'.format(rf_acc*100))

7. Logistic regression

lr = LogisticRegression(random_state=0)

lr.fit(X_train, y_train)
lr_pred = lr.predict(X_val)
lr_acc = accuracy_score(y_val, lr_pred)
print('Accuracy of Logistic Regression is: {:.2f}%'.format(lr_acc*100))

8. K-nearest neighbour

knn = KNeighborsClassifier()
params = {'n_neighbors':[2,3,4,5,6,7,8,9]}

model = GridSearchCV(knn, params, cv=5)
model.fit(X_train, y_train)
model.best_params_

kn = KNeighborsClassifier(n_neighbors=8)

kn.fit(X_train, y_train)
kn_pred = kn.predict(X_val)
kn_acc = accuracy_score(y_val, kn_pred)
print('Accuracy of KNeighbors is: {:.2f}%'.format(kn_acc*100))

RESULTS

1. Accuracy of Decision Tree is: 96.87%

It is a tree-structured classifier, where internal nodes represent the features of a dataset, branches represent the decision rules and each leaf node represents the outcome. It is a graphical representation for getting all the possible solutions to a problem/decision based on given conditions.

2. Accuracy of Random Forest is: 97.53%

Random Forest is a classifier that contains a number of decision trees on various subsets of the given dataset and takes the average to improve the predictive accuracy of that dataset.

3. Accuracy of Logistic Regression is: 97.27%

Logistic regression is one of the most popular Machine Learning algorithms, which comes under the Supervised Learning technique. It is used for predicting the categorical dependent variable using a given set of independent variables

4. Accuracy of KNeighbors is: 97.20%

K-NN algorithm assumes the similarity between the new case/data and available cases and put the new case into the category that is most similar to the available categorie K-NN algorithm stores all the available data and classifies a new data point based on the similarity. This means when new data appears then it can be easily classified into a well suite category by using K- NN algorithm.

Deployment process(in-complete)

File index.html(interface for deployment of webapp)

HTML TEMPLATE

import pandas as pd
import sklearn
import numpy as np
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.ensemble import VotingClassifier,RandomForestClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import confusion_matrix

data = pd.read_csv("L:\Gender classification\gender_classification_v7.csv")

#encoding data
twogender = {'Female':0, 'Male':1}
data['gender'] = data['gender'].map(twogender)

X = data.drop('gender', axis=1)
y = data['gender']

#splitting data for testing and traing process
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import accuracy_score, plot_confusion_matrix


X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3)

from sklearn.ensemble import RandomForestClassifier
#randomforestClassifier 
rf = RandomForestClassifier(random_state=0)

rf.fit(X_train, y_train)
rf_pred = rf.predict(X_val)
rf_acc = accuracy_score(y_val, rf_pred)
print('Accuracy of Random Forest is: {:.2f}%'.format(rf_acc*100))

#pickeling model
import pickle
pickle.dump(rf,open("model.pkl","wb"))

model =pickle.load(open("model.pkl","rb"))

this creates a model.pkl file and stores model

Contribution(s)

Contributions are always welcome! You can contribute to this project in the following way:

  • Deployment of model
  • Accuracy improvement
  • Bug fixes

Author

  • Aryan Raj

ForTheBadge built-with-love by Aryan Raj

Owner
Aryan raj
Computer Science and Engineering , SRM Institute of Science and Technology, Kattankulathur, Chennai
Aryan raj
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
Torchlight2 lan game server tool - A message forwarding tool for Torchlight 2 lan game

Torchlight 2 Lan Game Server Tool A message forwarding tool for Torchlight 2 lan

Huaijun Jiang 3 Nov 01, 2022
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Francis R. Willett 306 Jan 03, 2023
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
This program will stylize your photos with fast neural style transfer.

Neural Style Transfer (NST) Using TensorFlow Demo TensorFlow TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen

Ismail Boularbah 1 Aug 08, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022