Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Related tags

Deep Learningproxprop
Overview

Proximal Backpropagation

Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient steps to update the network parameters. We have analyzed this algorithm in our ICLR 2018 paper:

Proximal Backpropagation (Thomas Frerix, Thomas Möllenhoff, Michael Moeller, Daniel Cremers; ICLR 2018) [https://arxiv.org/abs/1706.04638]

tl;dr

  • We provide a PyTorch implementation of ProxProp for Python 3 and PyTorch 1.0.1.
  • The results of our paper can be reproduced by executing the script paper_experiments.sh.
  • ProxProp is implemented as a torch.nn.Module (a 'layer') and can be combined with any other layer and first-order optimizer. While a ProxPropConv2d and a ProxPropLinear layer already exist, you can generate a ProxProp layer for your favorite linear layer with one line of code.

Installation

  1. Make sure you have a running Python 3 (tested with Python 3.7) ecosytem. We recommend that you use a conda install, as this is also the recommended option to get the latest PyTorch running. For this README and for the scripts, we assume that you have conda running with Python 3.7.
  2. Clone this repository and switch to the directory.
  3. Install the dependencies via conda install --file conda_requirements.txt and pip install -r pip_requirements.txt.
  4. Install PyTorch with magma support. We have tested our code with PyTorch 1.0.1 and CUDA 10.0. You can install this setup via
    conda install -c pytorch magma-cuda100
    conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
    
  5. (optional, but necessary to reproduce paper experiments) Download the CIFAR-10 dataset by executing get_data.sh

Training neural networks with ProxProp

ProxProp is implemented as a custom linear layer (torch.nn.Module) with its own backward pass to take implicit gradient steps on the network parameters. With this design choice it can be combined with any other layer, for which one takes explicit gradient steps. Furthermore, the resulting update direction can be used with any first-order optimizer that expects a suitable update direction in parameter space. In our paper we prove that ProxProp generates a descent direction and show experiments with Nesterov SGD and Adam.

You can use our pre-defined layers ProxPropConv2d and ProxPropLinear, corresponding to nn.Conv2d and nn.Linear, by importing

from ProxProp import ProxPropConv2d, ProxPropLinear

Besides the usual layer parameters, as detailed in the PyTorch docs, you can provide:

  • tau_prox: step size for a proximal step; default is tau_prox=1
  • optimization_mode: can be one of 'prox_exact', 'prox_cg{N}', 'gradient' for an exact proximal step, an approximate proximal step with N conjugate gradient steps and an explicit gradient step, respectively; default is optimization_mode='prox_cg1'. The 'gradient' mode is for a fair comparison with SGD, as it incurs the same overhead as the other methods in exploiting a generic implementation with the provided PyTorch API.

If you want to use ProxProp to optimize your favorite linear layer, you can generate the respective module with one line of code. As an example for the the Conv3d layer:

from ProxProp import proxprop_module_generator
ProxPropConv3d = proxprop_module_generator(torch.nn.Conv3d)

This gives you a default implementation for the approximate conjugate gradient solver, which treats all parameters as a stacked vector. If you want to use the exact solver or want to use the conjugate gradient solver more efficiently, you have to provide the respective reshaping methods to proxprop_module_generator, as this requires specific knowledge of the layer's structure and cannot be implemented generically. As a template, take a look at the ProxProp.py file, where we have done this for the ProxPropLinear layer.

By reusing the forward/backward implementations of existing PyTorch modules, ProxProp becomes readily accessible. However, we pay an overhead associated with generically constructing the backward pass using the PyTorch API. We have intentionally sided with genericity over speed.

Reproduce paper experiments

To reproduce the paper experiments execute the script paper_experiments.sh. This will run our paper's experiments, store the results in the directory paper_experiments/ and subsequently compile the results into the file paper_plots.pdf. We use an NVIDIA Titan X GPU; executing the script takes roughly 3 hours.

Acknowledgement

We want to thank Soumith Chintala for helping us track down a mysterious bug and the whole PyTorch dev team for their continued development effort and great support to the community.

Publication

If you use ProxProp, please acknowledge our paper by citing

@article{Frerix-et-al-18,
    title = {Proximal Backpropagation},
    author={Thomas Frerix, Thomas Möllenhoff, Michael Moeller, Daniel Cremers},
    journal={International Conference on Learning Representations},
    year={2018},
    url = {https://arxiv.org/abs/1706.04638}
}
Owner
Thomas Frerix
Thomas Frerix
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Hugging Face 865 Dec 24, 2022
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning

H-Transformer-1D Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs. For now,

Phil Wang 123 Nov 17, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

Microsoft 674 Dec 26, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022