Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Related tags

Deep LearningTempo
Overview

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning DOI

Introduction

This repository was used to develop Tempo, as described in: Optimizing risk-based breast cancer screening policies with reinforcement learning.

Screening programs must balance the benefits of early detection against the costs of over screening. Here, we introduce a novel reinforcement learning-based framework for personalized screening, Tempo, and demonstrate its efficacy in the context of breast cancer. We trained our risk-based screening policies on a large screening mammography dataset from Massachusetts General Hospital (MGH) USA and validated them on held-out patients from MGH, and on external datasets from Emory USA, Karolinska Sweden and Chang Gung Memorial Hospital (CGMH) Taiwan. Across all test sets, we found that a Tempo policy combined with an image-based AI risk model, Mirai [1] was significantly more efficient than current regimes used in clinical practice in terms of simulated early detection per screen frequency. Moreover, we showed that the same Tempo policy can be easily adapted to a wide range of possible screening preferences, allowing clinicians to select their desired early detection to screening cost trade-off without training new policies. Finally, we demonstrated Tempo policies based on AI-based risk models out performed Tempo policies based on less accurate clinical risk models. Altogether, our results show that pairing AI-based risk models with agile AI-designed screening policies has the potential to improve screening programs, advancing early detection while reducing over-screening.

This code base is meant to provide exact implementation details for the development of Tempo.

Aside on Software Depedencies

This code assumes python3.6 and a Linux environment. The package requirements can be install with pip:

pip install -r requirements.txt

Tempo-Mirai assumes access to Mirai risk assessments. Resources for using Mirai are shown here.

Method

method

Our full framework, named Tempo, is depicted above. As described above, we first train a risk progression neural network to predict future risk assessments given previous assessments. This model is then used to estimate patient risk at unobserved timepoints and it enables us to simulate risk-based screening policies. Next, we train our screening policy, which is implemented as a neural network, to maximize the reward (i.e combination of early detection and screening cost) on our retrospective training set. We train our screening policy to support all possible early detection vs screening cost trade-offs using envelope Q-learning [2], an RL algorithm designed to balance multiple objectives. The input of our screening policies is the patient's risk assessment, and desired weighting between rewards (i.e screening preference). The output of the policy is a recommendation for when to return for the next screen, ranging from six months to three years in the future, in multiples of six months. Our reward balances two contrasting aspects, one reflecting the imaging cost, i.e., the average mammograms a year recommended by the policy, and one modeling early detection benefit relative to the retrospective screening trajectory. Our early detection reward measures the time difference in months between each patient's recommended screening date, if it was after their last negative mammogram, and their actual diagnosis date. We evaluate screening policies by simulating their recommendations for heldout patients.

Training Risk progression models

We experimented with different learning rates, hidden sizes, numbers of layers and dropout, and chose the model that obtained the lowest validation KL divergence on the MGH validation set. Our final risk progression RNN had two layers, a hidden dimension size of 100, a dropout of 0.25, and was trained for 30 epochs with a learning rate of 1e-3 using the Adam optimizer.

To reproduce our grid search for our Mirai risk progression model, you can run:

python scripts/dispatcher.py --experiment_config_path configs/risk_progression/gru.json

Given a trained risk progression model, we can now estimate unobserved risk assessments auto-regressively. At each time step, the model takes as input the previous risk assessment, the prior hidden state, using the previous predicted assessment if the real one is not available, and predicts the risk assessment at the next time step.

Training Tempo Personalized Screening Policies

We implemented our personalized screening policy as multiple layer perceptron, which took as input a risk assessment and weighting between rewards and predicted the Q-value for each action, i.e follow up recommendation, across the rewards. This network was trained using Envelope Q-Learning [2]. We experimented with different numbers of layers, hidden dimension sizes, learning rates, dropouts, exploration epsilons, target network reset rates and weight decay rates.

To reproduce our grid search for our Mirai risk progression model, you can run:

python scripts/dispatcher.py --experiment_config_path configs/screening/neural.json

Data availability

All datasets were used under license to the respective hospital system for the current study and are not publicly available. To access the MGH dataset, investigators should reach out to C.L. to apply for an IRB approved research collaboration and obtain an appropriate Data Use Agreement. To access the Karolinska dataset, investigators should reach out to F.S. to apply for an approved research collaboration and sign a Data Use Agreement. To access the CGMH dataset, investigators should contact G.L. to apply for an IRB approved research collaboration. To access the Emory dataset, investigators should reach out to H.T to apply for an approved collaboration.

References

[1] Yala, Adam, et al. "Toward robust mammography-based models for breast cancer risk." Science Translational Medicine 13.578 (2021).

[2] Yang, Runzhe, Xingyuan Sun, and Karthik Narasimhan. "A generalized algorithm for multi-objective reinforcement learning and policy adaptation." arXiv preprint arXiv:1908.08342 (2019).

Citing Tempo

@article{yala2021optimizing,
  title={Optimizing risk-based breast cancer screening policies with reinforcement learning},
  author={Yala, Adam and Mikhael, Peter and Lehman, Constance and Lin, Gigin and Strand, Fredrik and Wang, Yung-Liang and Hughes, Kevin and Satuluru, Siddharth and Kim, Thomas and Banerjee, Imon and others},
  year={2021}
}
You might also like...
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

a delightful machine learning tool that allows you to train, test and use models without writing code
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Code for
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Releases(v1.0)
Owner
Adam Yala
PhD Candidate at MIT CSAIL
Adam Yala
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation This is an official implementation of the NeurIPS 2021 paper: Trans

41 Nov 28, 2022
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Sebastian Murgul 3 Nov 11, 2022
Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups This repository contains the code for the paper

Team MIRA - BioMedIA 15 Oct 24, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022