Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Overview

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Components of a deep neural networks

This repository contains the code for the paper

B. Glocker, S. Winzeck. Algorithmic encoding of protected characteristics and its implications on disparities across subgroups. 2021. under review. arXiv:2110.14755

Dataset

The CheXpert imaging dataset together with the patient demographic information used in this work can be downloaded from https://stanfordmlgroup.github.io/competitions/chexpert/.

Code

For running the code, we recommend setting up a dedicated Python environment.

Setup Python environment using conda

Create and activate a Python 3 conda environment:

conda create -n pymira python=3
conda activate chexploration

Install PyTorch using conda:

conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

Setup Python environment using virtualenv

Create and activate a Python 3 virtual environment:

virtualenv -p python3 <path_to_envs>/chexploration
source <path_to_envs>/chexploration/bin/activate

Install PyTorch using pip:

pip install torch torchvision

Install additional Python packages:

pip install matplotlib jupyter pandas seaborn pytorch-lightning scikit-learn scikit-image tensorboard tqdm openpyxl

How to use

In order to replicate the results presented in the paper, please follow these steps:

  1. Download the CheXpert dataset, copy the file train.csv to the datafiles folder
  2. Download the CheXpert demographics data, copy the file CHEXPERT DEMO.xlsx to the datafiles folder
  3. Run the notebook chexpert.sample.ipynb to generate the study data
  4. Adjust the variable img_data_dir to point to the imaging data and run the following scripts
  5. Run the notebook chexpert.predictions.ipynb to evaluate all three prediction models
  6. Run the notebook chexpert.explorer.ipynb for the unsupervised exploration of feature representations

Additionally, there are scripts chexpert.sex.split.py and chexpert.race.split.py to run SPLIT on the disease detection model. The default setting in all scripts is to train a DenseNet-121 using the training data from all patients. The results for models trained on subgroups only can be produced by changing the path to the datafiles (e.g., using full_sample_train_white.csv and full_sample_val_white.csv instead of full_sample_train.csv and full_sample_val.csv).

Note, the Python scripts also contain code for running the experiments using a ResNet-34 backbone which requires less GPU memory.

Trained models

All trained models, feature embeddings and output predictions can be found here.

Funding sources

This work is supported through funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 757173, Project MIRA, ERC-2017-STG) and by the UKRI London Medical Imaging & Artificial Intelligence Centre for Value Based Healthcare.

License

This project is licensed under the Apache License 2.0.

Owner
Team MIRA - BioMedIA
Team MIRA - BioMedIA
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This

Saad Wazir 11 Dec 16, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference šŸš€ on CPU and GPU. Built with šŸ¤— Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and OptimizationĀ Laboratory 4 Aug 27, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022