Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Overview

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Components of a deep neural networks

This repository contains the code for the paper

B. Glocker, S. Winzeck. Algorithmic encoding of protected characteristics and its implications on disparities across subgroups. 2021. under review. arXiv:2110.14755

Dataset

The CheXpert imaging dataset together with the patient demographic information used in this work can be downloaded from https://stanfordmlgroup.github.io/competitions/chexpert/.

Code

For running the code, we recommend setting up a dedicated Python environment.

Setup Python environment using conda

Create and activate a Python 3 conda environment:

conda create -n pymira python=3
conda activate chexploration

Install PyTorch using conda:

conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

Setup Python environment using virtualenv

Create and activate a Python 3 virtual environment:

virtualenv -p python3 <path_to_envs>/chexploration
source <path_to_envs>/chexploration/bin/activate

Install PyTorch using pip:

pip install torch torchvision

Install additional Python packages:

pip install matplotlib jupyter pandas seaborn pytorch-lightning scikit-learn scikit-image tensorboard tqdm openpyxl

How to use

In order to replicate the results presented in the paper, please follow these steps:

  1. Download the CheXpert dataset, copy the file train.csv to the datafiles folder
  2. Download the CheXpert demographics data, copy the file CHEXPERT DEMO.xlsx to the datafiles folder
  3. Run the notebook chexpert.sample.ipynb to generate the study data
  4. Adjust the variable img_data_dir to point to the imaging data and run the following scripts
  5. Run the notebook chexpert.predictions.ipynb to evaluate all three prediction models
  6. Run the notebook chexpert.explorer.ipynb for the unsupervised exploration of feature representations

Additionally, there are scripts chexpert.sex.split.py and chexpert.race.split.py to run SPLIT on the disease detection model. The default setting in all scripts is to train a DenseNet-121 using the training data from all patients. The results for models trained on subgroups only can be produced by changing the path to the datafiles (e.g., using full_sample_train_white.csv and full_sample_val_white.csv instead of full_sample_train.csv and full_sample_val.csv).

Note, the Python scripts also contain code for running the experiments using a ResNet-34 backbone which requires less GPU memory.

Trained models

All trained models, feature embeddings and output predictions can be found here.

Funding sources

This work is supported through funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 757173, Project MIRA, ERC-2017-STG) and by the UKRI London Medical Imaging & Artificial Intelligence Centre for Value Based Healthcare.

License

This project is licensed under the Apache License 2.0.

Owner
Team MIRA - BioMedIA
Team MIRA - BioMedIA
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022