YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

Overview

YOLOX CondInst -- YOLOX 实例分割

version


demo_vis


前言

  1. 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想与本人探讨有关深度学习的相关知识,欢迎通过邮件交流
  2. 后续想解决模型的部署问题(c++)
  3. 后续想继续安装其他实例分割的代码

Update

  1. waiting ...

Some Ideas

  1. 在写推理的代码的时候,为了兼容eval的代码将做了很多split和cat的操作,这减慢了检测的速度,如果单纯想进行推理,可以将这部分的操作简化
  2. fp16模型存在问题,等待解决

Introduction

  1. For YOLOX, I change some codes and it will lead speed up.
  2. For CondInst, I just follow AdelaiDet and keep the same parameters as it.

Content

Quick Start

Firstly, create python environment

$ conda create -n yolox_inst python=3.7 -y

Then, clone the github of the item

$ git clone https://github.com/DDGRCF/YOLOX-CondInst.git

Then, you can adjust follow the original quick start

Instruction

Demo

I prepare the shell the demo script so that you can quickly run obb demo as:

$ cd my_exps
$ bash demo_inst.sh 0 /path/to/you
# PS: 0 is to assign the train environment to 0 gpu, you can change it by youself and /path/to/you is your demo images.

Train

I define the model default training parameters as following:

model max epoch enable_mixup enable_mosaic no aug epoch
yolox_s 24 True True 5
cls_loss_weight obj_loss_weight iou_loss_weight reg_loss_weight mask_loss_weight
1.0 1.0 5.0 1.0 5.0

Of course, this group parameters is not the best one, so you can try youself. And for the quick train, I have prepare the shell scripts, too.

$ cd my_exps
$ bash train_dota_obb.sh  0

As I set parameters above with 16 batch size per gpu (2gpu), the lresults on val dataset show as following: waiting ...

Test

I just follow original evaluation to test and eval

$ cd my_exps
$ ./eval_dota_obb.sh eval/test 0
# PS: for convenience, I set default parameters. So, eval means evaluating COCO val datasets.

Ralated Hub

Owner
DDGRCF
Focus on the region of Deep Learning in the computer vision.
DDGRCF
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
The official PyTorch implementation of paper BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition Boyan Zhou, Quan Cui, Xiu-Shen Wei*, Zhao-Min Chen This repo

Megvii-Nanjing 616 Dec 21, 2022