Final report with code for KAIST Course KSE 801.

Overview

🧮 KSE 801 Final Report with Code

This is the final report with code for KAIST course KSE 801.

Author: Chuanbo Hua, Federico Berto.

💡 Introduction About the OSC

Orthogonal collocation is a method for the numerical solution of partial differential equations. It uses collocation at the zeros of some orthogonal polynomials to transform the partial differential equation (PDE) to a set of ordinary differential equations (ODEs). The ODEs can then be solved by any method. It has been shown that it is usually advantageous to choose the collocation points as the zeros of the corresponding Jacobi polynomial (independent of the PDE system) [1].

Orthogonal collocation method was famous at 1970s, mainly developed by BA Finlayson [2]. Which is a powerful collocation tool in solving partial differential equations and ordinary differential equations.

Orthogonal collocation method works for more than one variable, but here we only choose one variable cases, since this is more simple to understand and most widely used.

💡 Introduction About the GNN

You can find more details from the jupter notebook within gnn-notebook folder. We include the dataset init, model training and test in the folder.

Reminder: for dataset, we provide another repository for dataset generator. Please refer to repo: https://github.com/DiffEqML/pde-dataset-generator.

🏷 Features

  • Turoritals. We provide several examples, including linear and nonlinear problems to help you to understand how to use it and the performance of this model.
  • Algorithm Explanation. We provide a document to in detail explain how this alogirthm works by example, which we think it's easier to get. For more detail, please refer to Algorithm section.

⚙️ Requirement

Python Version: 3.6 or later
Python Package: numpy, matplotlib, jupyter-notebook/jupyter-lab, dgl, torch

🔧 Structure

  • src: source code for OSC algorithm.
  • fig: algorithm output figures for readme
  • osc-notebook: tutorial jupyter notebooks about our osc method
  • gnn-notebook: tutorial jupyter notebooks about graph neural network
  • script: some training and tesing script of the graph neural network

🔦 How to use

Step 1. Download or Clone this repository.

Step 2. Refer to osc-notebook/example.ipynb, it will introduce how to use this model in detail by examples. Main process would be

  1. collocation1d(): generate collocation points.
  2. generator1d(): generate algebra equations from PDEs to be solved.
  3. numpy.linalg.solve(): solve the algebra equations to get polynomial result,
  4. polynomial1d(): generate simulation value to check the loss.

Step 3. Refer to notebooks under gnn-notebook to get the idea of training graph model.

📈 Examples

One variable, linear, 3 order Loss: <1e-4

One variable, linear, 4 order Loss: 2.2586

One variable, nonlinear Loss: 0.0447

2D PDEs Simulation

Dam Breaking Simulation

📜 Algorithm

Here we are going to simply introduce how 1D OSC works by example. Original pdf please refer to Introduction.pdf in this repository.

📚 References

[1] Orthogonal collocation. (2018, January 30). In Wikipedia. https://en.wikipedia.org/wiki/Orthogonal_collocation.

[2] Carey, G. F., and Bruce A. Finlayson. "Orthogonal collocation on finite elements." Chemical Engineering Science 30.5-6 (1975): 587-596.

Owner
Chuanbo HUA
HIT, POSTECH, KAIST.
Chuanbo HUA
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
Transformers are Graph Neural Networks!

🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022