Near-Duplicate Video Retrieval with Deep Metric Learning

Overview

Near-Duplicate Video Retrieval
with Deep Metric Learning

This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retrieval with Deep Metric Learning. It provides code for training and evalutation of a Deep Metric Learning (DML) network on the problem of Near-Duplicate Video Retrieval (NDVR). During training, the DML network is fed with video triplets, generated by a triplet generator. The network is trained based on the triplet loss function. The architecture of the network is displayed in the figure below. For evaluation, mean Average Precision (mAP) and Presicion-Recall curve (PR-curve) are calculated. Two publicly available dataset are supported, namely VCDB and CC_WEB_VIDEO.

Prerequisites

  • Python
  • Tensorflow 1.xx

Getting started

Installation

  • Clone this repo:
git clone https://github.com/MKLab-ITI/ndvr-dml
cd ndvr-dml
  • You can install all the dependencies by
pip install -r requirements.txt

or

conda install --file requirements.txt

Triplet generation

Run the triplet generation process for each dataset, VCDB and CC_WEB_VIDEO. This process will generate two files for each dataset:

  1. the global feature vectors for each video in the dataset:
    <output_dir>/<dataset>_features.npy
  2. the generated triplets:
    <output_dir>/<dataset>_triplets.npy

To execute the triplet generation process, do as follows:

  • The code does not extract features from videos. Instead, the .npy files of the already extracted features have to be provided. You may use the tool in here to do so.

  • Create a file that contains the video id and the path of the feature file for each video in the processing dataset. Each line of the file have to contain the video id (basename of the video file) and the full path to the corresponding .npy file of its features, separated by a tab character (\t). Example:

      23254771545e5d278548ba02d25d32add952b2a4	features/23254771545e5d278548ba02d25d32add952b2a4.npy
      468410600142c136d707b4cbc3ff0703c112575d	features/468410600142c136d707b4cbc3ff0703c112575d.npy
      67f1feff7f624cf0b9ac2ebaf49f547a922b4971	features/67f1feff7f624cf0b9ac2ebaf49f547a922b4971.npy
                                               ...	
    
  • Run the triplet generator and provide the generated file from the previous step, the name of the processed dataset, and the output directory.

python triplet_generator.py --dataset vcdb --feature_files vcdb_feature_files.txt --output_dir output_data/

DML training

  • Train the DML network by providing the global features and triplet of VCDB, and a directory to save the trained model.
python train_dml.py --train_set output_data/vcdb_features.npy --triplets output_data/vcdb_triplets.npy --model_path model/ 
  • Triplets from the CC_WEB_VIDEO can be injected if the global features and triplet of the evaluation set are provide.
python train_dml.py --evaluation_set output_data/cc_web_video_features.npy --evaluation_triplets output_data/cc_web_video_triplets.npy --train_set output_data/vcdb_features.npy --triplets output_data/vcdb_triplets.npy --model_path model/

Evaluation

  • Evaluate the performance of the system by providing the trained model path and the global features of the CC_WEB_VIDEO.
python evaluation.py --fusion Early --evaluation_set output_data/cc_vgg_features.npy --model_path model/

OR

python evaluation.py --fusion Late --evaluation_features cc_web_video_feature_files.txt --evaluation_set output_data/cc_vgg_features.npy --model_path model/
  • The mAP and PR-curve are returned

Citation

If you use this code for your research, please cite our paper.

@inproceedings{kordopatis2017dml,
  title={Near-Duplicate Video Retrieval with Deep Metric Learning},
  author={Kordopatis-Zilos, Giorgos and Papadopoulos, Symeon and Patras, Ioannis and Kompatsiaris, Yiannis},
  booktitle={2017 IEEE International Conference on Computer Vision Workshop (ICCVW)},
  year={2017},
}

Related Projects

ViSiL Intermediate-CNN-Features FIVR-200K

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details

Contact for further details about the project

Giorgos Kordopatis-Zilos ([email protected])
Symeon Papadopoulos ([email protected])

PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022