CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

Overview

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation)

teaser

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation
CVPR 2021, oral presentation
Xingran Zhou, Bo Zhang, Ting Zhang, Pan Zhang, Jianmin Bao, Dong Chen, Zhongfei Zhang, Fang Wen

Paper | Slides

Abstract

We present the full-resolution correspondence learning for cross-domain images, which aids image translation. We adopt a hierarchical strategy that uses the correspondence from coarse level to guide the fine levels. At each hierarchy, the correspondence can be efficiently computed via PatchMatch that iteratively leverages the matchings from the neighborhood. Within each PatchMatch iteration, the ConvGRU module is employed to refine the current correspondence considering not only the matchings of larger context but also the historic estimates. The proposed CoCosNet v2, a GRU-assisted PatchMatch approach, is fully differentiable and highly efficient. When jointly trained with image translation, full-resolution semantic correspondence can be established in an unsupervised manner, which in turn facilitates the exemplar-based image translation. Experiments on diverse translation tasks show that CoCosNet v2 performs considerably better than state-of-the-art literature on producing high-resolution images.

Installation

First please install dependencies for the experiment:

pip install -r requirements.txt

We recommend to install Pytorch version after Pytorch 1.6.0 since we made use of automatic mixed precision for accelerating. (we used Pytorch 1.7.0 in our experiments)

Prepare the dataset

First download the Deepfashion dataset (high resolution version) from this link. Note the file name is img_highres.zip. Unzip the file and rename it as img.
If the password is necessary, please contact this link to access the dataset.
We use OpenPose to estimate pose of DeepFashion(HD). We offer the keypoints detection results used in our experiment in this link. Download and unzip the results file.
Since the original resolution of DeepfashionHD is 750x1101, we use a Python script to process the images to the resolution 512x512. You can find the script in data/preprocess.py. Note you need to download our train-val split lists train.txt and val.txt from this link in this step.
Download the train-val lists from this link, and the retrival pair lists from this link. Note train.txt and val.txt are our train-val lists. deepfashion_ref.txt, deepfashion_ref_test.txt and deepfashion_self_pair.txt are the paring lists used in our experiment. Download them all and move below the folder data/.
Finally create the root folder deepfashionHD, and move the folders img and pose below it. Now the the directory structure is like:

deepfashionHD
│
└─── img
│   │
│   └─── MEN
│   │   │   ...
│   │
│   └─── WOMEN
│       │   ...
│   
└─── pose
│   │
│   └─── MEN
│   │   │   ...
│   │
│   └─── WOMEN
│       │   ...

Inference Using Pretrained Model

The inference results are saved in the folder checkpoints/deepfashionHD/test. Download the pretrained model from this link.
Move the models below the folder checkpoints/deepfashionHD. Then run the following command.

python test.py --name deepfashionHD --dataset_mode deepfashionHD --dataroot dataset/deepfashionHD --PONO --PONO_C --no_flip --batchSize 8 --gpu_ids 0 --netCorr NoVGGHPM --nThreads 16 --nef 32 --amp --display_winsize 512 --iteration_count 5 --load_size 512 --crop_size 512

The inference results are saved in the folder checkpoints/deepfashionHD/test.

Training from scratch

Make sure you have prepared the DeepfashionHD dataset as the instruction.
Download the pretrained VGG model from this link, move it to vgg/ folder. We use this model to calculate training loss.

Run the following command for training from scratch.

python train.py --name deepfashionHD --dataset_mode deepfashionHD --dataroot dataset/deepfashionHD --niter 100 --niter_decay 0 --real_reference_probability 0.0 --hard_reference_probability 0.0 --which_perceptual 4_2 --weight_perceptual 0.001 --PONO --PONO_C --vgg_normal_correct --weight_fm_ratio 1.0 --no_flip --video_like --batchSize 16 --gpu_ids 0,1,2,3,4,5,6,7 --netCorr NoVGGHPM --match_kernel 1 --featEnc_kernel 3 --display_freq 500 --print_freq 50 --save_latest_freq 2500 --save_epoch_freq 5 --nThreads 16 --weight_warp_self 500.0 --lr 0.0001 --nef 32 --amp --weight_warp_cycle 1.0 --display_winsize 512 --iteration_count 5 --temperature 0.01 --continue_train --load_size 550 --crop_size 512 --which_epoch 15

Note that --dataroot parameter is your DeepFashionHD dataset root, e.g. dataset/DeepFashionHD.
We use 8 32GB Tesla V100 GPUs to train the network. You can set batchSize to 16, 8 or 4 with fewer GPUs and change gpu_ids.

Citation

If you use this code for your research, please cite our papers.

@inproceedings{zhou2021full,
  title={CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation},
  author={Zhou, Xingran and Zhang, Bo and Zhang, Ting and Zhang, Pan and Bao, Jianmin and Chen, Dong and Zhang, Zhongfei and Wen, Fang},
  booktitle={CVPR},
  year={2021}
}

Acknowledgments

This code borrows heavily from CocosNet and DeepPruner. We also thank SPADE and RAFT.

License

The codes and the pretrained model in this repository are under the MIT license as specified by the LICENSE file.
This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv

Divam Gupta 101 Sep 07, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022