CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

Overview

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation)

teaser

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation
CVPR 2021, oral presentation
Xingran Zhou, Bo Zhang, Ting Zhang, Pan Zhang, Jianmin Bao, Dong Chen, Zhongfei Zhang, Fang Wen

Paper | Slides

Abstract

We present the full-resolution correspondence learning for cross-domain images, which aids image translation. We adopt a hierarchical strategy that uses the correspondence from coarse level to guide the fine levels. At each hierarchy, the correspondence can be efficiently computed via PatchMatch that iteratively leverages the matchings from the neighborhood. Within each PatchMatch iteration, the ConvGRU module is employed to refine the current correspondence considering not only the matchings of larger context but also the historic estimates. The proposed CoCosNet v2, a GRU-assisted PatchMatch approach, is fully differentiable and highly efficient. When jointly trained with image translation, full-resolution semantic correspondence can be established in an unsupervised manner, which in turn facilitates the exemplar-based image translation. Experiments on diverse translation tasks show that CoCosNet v2 performs considerably better than state-of-the-art literature on producing high-resolution images.

Installation

First please install dependencies for the experiment:

pip install -r requirements.txt

We recommend to install Pytorch version after Pytorch 1.6.0 since we made use of automatic mixed precision for accelerating. (we used Pytorch 1.7.0 in our experiments)

Prepare the dataset

First download the Deepfashion dataset (high resolution version) from this link. Note the file name is img_highres.zip. Unzip the file and rename it as img.
If the password is necessary, please contact this link to access the dataset.
We use OpenPose to estimate pose of DeepFashion(HD). We offer the keypoints detection results used in our experiment in this link. Download and unzip the results file.
Since the original resolution of DeepfashionHD is 750x1101, we use a Python script to process the images to the resolution 512x512. You can find the script in data/preprocess.py. Note you need to download our train-val split lists train.txt and val.txt from this link in this step.
Download the train-val lists from this link, and the retrival pair lists from this link. Note train.txt and val.txt are our train-val lists. deepfashion_ref.txt, deepfashion_ref_test.txt and deepfashion_self_pair.txt are the paring lists used in our experiment. Download them all and move below the folder data/.
Finally create the root folder deepfashionHD, and move the folders img and pose below it. Now the the directory structure is like:

deepfashionHD
│
└─── img
│   │
│   └─── MEN
│   │   │   ...
│   │
│   └─── WOMEN
│       │   ...
│   
└─── pose
│   │
│   └─── MEN
│   │   │   ...
│   │
│   └─── WOMEN
│       │   ...

Inference Using Pretrained Model

The inference results are saved in the folder checkpoints/deepfashionHD/test. Download the pretrained model from this link.
Move the models below the folder checkpoints/deepfashionHD. Then run the following command.

python test.py --name deepfashionHD --dataset_mode deepfashionHD --dataroot dataset/deepfashionHD --PONO --PONO_C --no_flip --batchSize 8 --gpu_ids 0 --netCorr NoVGGHPM --nThreads 16 --nef 32 --amp --display_winsize 512 --iteration_count 5 --load_size 512 --crop_size 512

The inference results are saved in the folder checkpoints/deepfashionHD/test.

Training from scratch

Make sure you have prepared the DeepfashionHD dataset as the instruction.
Download the pretrained VGG model from this link, move it to vgg/ folder. We use this model to calculate training loss.

Run the following command for training from scratch.

python train.py --name deepfashionHD --dataset_mode deepfashionHD --dataroot dataset/deepfashionHD --niter 100 --niter_decay 0 --real_reference_probability 0.0 --hard_reference_probability 0.0 --which_perceptual 4_2 --weight_perceptual 0.001 --PONO --PONO_C --vgg_normal_correct --weight_fm_ratio 1.0 --no_flip --video_like --batchSize 16 --gpu_ids 0,1,2,3,4,5,6,7 --netCorr NoVGGHPM --match_kernel 1 --featEnc_kernel 3 --display_freq 500 --print_freq 50 --save_latest_freq 2500 --save_epoch_freq 5 --nThreads 16 --weight_warp_self 500.0 --lr 0.0001 --nef 32 --amp --weight_warp_cycle 1.0 --display_winsize 512 --iteration_count 5 --temperature 0.01 --continue_train --load_size 550 --crop_size 512 --which_epoch 15

Note that --dataroot parameter is your DeepFashionHD dataset root, e.g. dataset/DeepFashionHD.
We use 8 32GB Tesla V100 GPUs to train the network. You can set batchSize to 16, 8 or 4 with fewer GPUs and change gpu_ids.

Citation

If you use this code for your research, please cite our papers.

@inproceedings{zhou2021full,
  title={CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation},
  author={Zhou, Xingran and Zhang, Bo and Zhang, Ting and Zhang, Pan and Bao, Jianmin and Chen, Dong and Zhang, Zhongfei and Wen, Fang},
  booktitle={CVPR},
  year={2021}
}

Acknowledgments

This code borrows heavily from CocosNet and DeepPruner. We also thank SPADE and RAFT.

License

The codes and the pretrained model in this repository are under the MIT license as specified by the LICENSE file.
This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023