The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

Overview

ISC21-Descriptor-Track-1st

The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

You can check our solution tech report from: Contrastive Learning with Large Memory Bank and Negative Embedding Subtraction for Accurate Copy Detection

setup

OS

Ubuntu 18.04

CUDA Version

11.1

environment

Run this for python env

conda env create -f environment.yml

data download

mkdir -p input/{query,reference,train}_images
aws s3 cp s3://drivendata-competition-fb-isc-data/all/query_images/ input/query_images/ --recursive --no-sign-request
aws s3 cp s3://drivendata-competition-fb-isc-data/all/reference_images/ input/reference_images/ --recursive --no-sign-request
aws s3 cp s3://drivendata-competition-fb-isc-data/all/train_images/ input/train_images/ --recursive --no-sign-request
aws s3 cp s3://drivendata-competition-fb-isc-data/all/query_images_phase2/ input/query_images_phase2/ --recursive --no-sign-request

train

Run below lines step by step.

cd exp

CUDA_VISIBLE_DEVICES=0,1,2,3 python v83.py \
  -a tf_efficientnetv2_m_in21ft1k --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --seed 9 \
  --epochs 5 --lr 0.1 --wd 1e-6 --batch-size 128 --ncrops 2 \
  --gem-p 1.0 --pos-margin 0.0 --neg-margin 1.0 \
  --input-size 256 --sample-size 1000000 --memory-size 20000 \
  ../input/training_images/
CUDA_VISIBLE_DEVICES=0,1,2,3 python v83.py \
  -a tf_efficientnetv2_m_in21ft1k --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --seed 90 \
  --epochs 10 --lr 0.1 --wd 1e-6 --batch-size 128 --ncrops 2 \
  --gem-p 1.0 --pos-margin 0.0 --neg-margin 1.0 \
  --input-size 256 --sample-size 1000000 --memory-size 20000 \
  --resume ./v83/train/checkpoint_0004.pth.tar \
  ../input/training_images/

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python v86.py \
  -a tf_efficientnetv2_m_in21ft1k --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --seed 99 \
  --epochs 7 --lr 0.1 --wd 1e-6 --batch-size 128 --ncrops 2 \
  --gem-p 1.0 --pos-margin 0.0 --neg-margin 1.0 \
  --input-size 384 --sample-size 1000000 --memory-size 20000 --weight ./v83/train/checkpoint_0005.pth.tar \
  ../input/training_images/

python v98.py \
  -a tf_efficientnetv2_m_in21ft1k --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --seed 999 \
  --epochs 3 --lr 0.1 --wd 1e-6 --batch-size 64 --ncrops 2 \
  --gem-p 1.0 --pos-margin 0.0 --neg-margin 1.0 --weight ./v86/train/checkpoint_0005.pth.tar \
  --input-size 512 --sample-size 1000000 --memory-size 20000 \
  ../input/training_images/

python v107.py \
  -a tf_efficientnetv2_m_in21ft1k --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --seed 99999 \
  --epochs 10 --lr 0.5 --wd 1e-6 --batch-size 16 --ncrops 2 \
  --gem-p 1.0 --pos-margin 0.0 --neg-margin 1.1 --weight ./v98/train/checkpoint_0001.pth.tar \
  --input-size 512 --sample-size 1000000 --memory-size 1000 \
  ../input/training_images/

The final model weight can be downloaded from here: https://drive.google.com/file/d/1ySea-NJp_J0aWvma_WmVbc3Hnwf5LHUf/view?usp=sharing You can execute inference code without run training with this model weight. To locate the model weight to suitable location, run following commands after downloaded the model weight.

mkdir -p exp/v107/train
mv checkpoint_009.pth.tar exp/v107/train/

inference

Note that faiss doesn't work with A100, so I used 4x GTX 1080 Ti for post-process.

cd exp

python v107.py -a tf_efficientnetv2_m_in21ft1k --batch-size 128 --mode extract --gem-eval-p 1.0 --weight ./v107/train/checkpoint_0009.pth.tar --input-size 512 --target-set qrt ../input/

# this script generates final prediction result files
python ../scripts/postprocess.py

Submission files are outputted here:

  • exp/v107/extract/v107_iso.h5 # descriptor track
  • exp/v107/extract/v107_iso.csv # matching track

descriptor track local evaluation score:

{
  "average_precision": 0.9479039085717805,
  "recall_p90": 0.9192546583850931
}
Comments
  • Bugs?

    Bugs?

    Congratulations! We really appreciate the work. When I run the

    python v107.py \
      -a tf_efficientnetv2_m_in21ft1k --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --seed 99999 \
      --epochs 10 --lr 0.5 --wd 1e-6 --batch-size 16 --ncrops 2 \
      --gem-p 1.0 --pos-margin 0.0 --neg-margin 1.1 --weight ./v98/train/checkpoint_0001.pth.tar \
      --input-size 512 --sample-size 1000000 --memory-size 1000 \
      ../input/training_images/
    

    I come across

    Traceback (most recent call last):                                              
      File "v107.py", line 774, in <module>
        train(args)
      File "v107.py", line 425, in train
        mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
      File "/home/wangwenhao/anaconda3/envs/ISC/lib/python3.7/site-packages/torch/multiprocessing/spawn.py", line 230, in spawn
        return start_processes(fn, args, nprocs, join, daemon, start_method='spawn')
      File "/home/wangwenhao/anaconda3/envs/ISC/lib/python3.7/site-packages/torch/multiprocessing/spawn.py", line 188, in start_processes
        while not context.join():
      File "/home/wangwenhao/anaconda3/envs/ISC/lib/python3.7/site-packages/torch/multiprocessing/spawn.py", line 150, in join
        raise ProcessRaisedException(msg, error_index, failed_process.pid)
    torch.multiprocessing.spawn.ProcessRaisedException: 
    
    -- Process 5 terminated with the following error:
    Traceback (most recent call last):
      File "/home/wangwenhao/anaconda3/envs/ISC/lib/python3.7/site-packages/torch/multiprocessing/spawn.py", line 59, in _wrap
        fn(i, *args)
      File "/home/wangwenhao/fbisc-descriptor-1st/exp/v107.py", line 573, in main_worker
        train_one_epoch(train_loader, model, loss_fn, optimizer, scaler, epoch, args)
      File "/home/wangwenhao/fbisc-descriptor-1st/exp/v107.py", line 595, in train_one_epoch
        labels = torch.cat([torch.tile(i, dims=(args.ncrops,)), torch.tensor(j)])
    ValueError: only one element tensors can be converted to Python scalars
    

    Do you know how to fix it? Thanks.

    opened by WangWenhao0716 14
  • data augment is wrong

    data augment is wrong

    train_dataset = ISCDataset(
        train_paths,
        NCropsTransform(
            transforms.Compose(aug_moderate),
            transforms.Compose(aug_hard),
            args.ncrops,
        ),
    )
    

    error log: apply_transform() takes from 2 to 3 positional arguments but 5 were given

    opened by AItechnology 5
  • Cannot load state dict for model

    Cannot load state dict for model

    Thanks for your amazing work. But I encounter a problem, when I use checkpoint_0009.pth.tar checkpoint,

    • When I don't remove model = nn.DataParallel(model), I encouter error:
            size mismatch for module.backbone.bn1.weight: copying a param with shape torch.Size([24]) from checkpoint, the shape in current model is 
    torch.Size([64]).
            size mismatch for module.backbone.bn1.bias: copying a param with shape torch.Size([24]) from checkpoint, the shape in current model is torch.Size([64]).
            size mismatch for module.backbone.bn1.running_mean: copying a param with shape torch.Size([24]) from checkpoint, the shape in current model is torch.Size([64]).
            size mismatch for module.backbone.bn1.running_var: copying a param with shape torch.Size([24]) from checkpoint, the shape in current model is torch.Size([64]).
            size mismatch for module.fc.weight: copying a param with shape torch.Size([256, 512]) from checkpoint, the shape in current model is torch.Size([256, 2048])
    
    • Then I remove line model = nn.DataParallel(model), the model seems to load checkpoint successfully, but I feed same input to model, the output feature vector if different for different time I run. I guess the model is not loaded successfully when load state dict, so model will use the weight initialized randomly.
    • Then I change strict=True in model.load_state_dict(state_dict=state_dict, strict=False), I encounter error RuntimeError: Error(s) in loading state_dict for ISCNet: Missing key(s) in state_dict:, I found that the key of state_dict in model and checkpoint totally diffrent even name pattern. Key of model state dict and checkpoint state dict I attached below. checkpoint.txt model.txt How can I solve the this problem?
    opened by NguyenThanhAI 2
  • Unable to reproduce Stage 1 results

    Unable to reproduce Stage 1 results

    Hi, I attempted to reproduce the Stage 1 training using your provided code, but was unable to obtain the reported muAP of 0.5831. I instead obtained this result at epoch 9 (indexed from 0):

    Average Precision: 0.49554
    Recall at P90    : 0.32701
    Threshold at P90 : -0.375733
    Recall at rank 1:  0.62448
    Recall at rank 10: 0.65961
    

    I also saw that you continued training from epoch 5, but these are the results I obtained at epoch 5:

    Average Precision: 0.47977
    Recall at P90    : 0.32501
    Threshold at P90 : -0.376619
    Recall at rank 1:  0.61409
    Recall at rank 10: 0.64903
    

    Both sets of results were obtained on the private ground truth set of Phase 1, using image size 512. Is it possible to provide some insight as to what is happening here? Thank you.

    opened by avrilwongaw 1
  • about the train output feature

    about the train output feature

    sorry to bother you again. I want train the model with a small backbone such as resnet50. Because I only have three GPU and I run with command:

    CUDA_VISIBLE_DEVICES=0,1,2 python v83.py  --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --seed 9 \
      --epochs 5 --lr 0.1 --wd 1e-6 --batch-size 96 --ncrops 2 \
      --gem-p 1.0 --pos-margin 0.0 --neg-margin 1.0 \
      --input-size 256 --sample-size 1000000 --memory-size 20000 \
    /root/zhx3/data/fb_train_data/train
    

    I find a strange problem. I test checkpoint_000{0..4}.pth.tar model. only the checkpoint_0002.pth.tar ouput different when the input is different. I mean other model will output same embedding no matter what different you input. thanks in advance. the loss log output such as:

    epoch 5:   0%|          | 0/15873 [00:00<?, ?it/s]=> loading checkpoint './v83/train/checkpoint_0004.pth.tar'
    => loaded checkpoint './v83/train/checkpoint_0004.pth.tar' (epoch 5)
    epoch 6:   0%|          | 0/15873 [00:00<?, ?it/s]epoch=5, loss=1.0154363534772417
    epoch 7:   0%|          | 0/15873 [00:00<?, ?it/s]epoch=6, loss=1.012835873522891
    
    opened by Usernamezhx 1
  • about the memory size

    about the memory size

    python v107.py \
      -a tf_efficientnetv2_m_in21ft1k --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 --seed 99999 \
      --epochs 10 --lr 0.5 --wd 1e-6 \
      --gem-p 1.0 --pos-margin 0.0 --neg-margin 1.1 --weight ./v98/train/checkpoint_0001.pth.tar \
      --input-size 512 --sample-size 1000000 --memory-size 1000 \
      ../input/training_images/
    

    why not set the --memory-size large such as 20000 ? thanks in advance

    opened by Usernamezhx 1
  • will v107 overfit for phase2?

    will v107 overfit for phase2?

    Congratulations and thanks for your sharing.

    i find v107 only use the about 5k query-ref pair (i.e. gt in phase1) as positive. How to know whether it overfits for phase2 ?

    opened by liangzimei 1
  • access denied for dataset on aws

    access denied for dataset on aws

    Thanks for you work! I have problems downloading the dataset from the given aws buckets

    $ aws s3 cp s3://drivendata-competition-fb-isc-data/all/query_images/ input/query_images/ --recursive --no-sign-request
    fatal error: An error occurred (AccessDenied) when calling the ListObjectsV2 operation: Access Denied
    

    Do I need special permissions to download the data?

    opened by sebastianlutter 0
  • Final optimizer state for the model

    Final optimizer state for the model

    Hello @lyakaap

    Thanks a lot for this work. I am trying to take this and finetune over a certain task. Is it possible you can provide the state of final optimizer after 4th stage of training. We want to try an experiment where it will be very useful.

    Thank you.

    opened by shubhamjain0594 11
Owner
lyakaap
Computer Vision, Deep Learning
lyakaap
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Collection of Docker images for ML/DL and video processing projects

Collection of Docker images for ML/DL and video processing projects. Overview of images Three types of images differ by tag postfix: base: Python with

OSAI 87 Nov 22, 2022
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
PyElastica is the Python implementation of Elastica, an open-source software for the simulation of assemblies of slender, one-dimensional structures using Cosserat Rod theory.

PyElastica PyElastica is the python implementation of Elastica: an open-source project for simulating assemblies of slender, one-dimensional structure

Gazzola Lab 105 Jan 09, 2023
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
🥇 LG-AI-Challenge 2022 1위 솔루션 입니다.

LG-AI-Challenge-for-Plant-Classification Dacon에서 진행된 농업 환경 변화에 따른 작물 병해 진단 AI 경진대회 에 대한 코드입니다. (colab directory에 코드가 잘 정리 되어있습니다.) Requirements python

siwooyong 10 Jun 30, 2022
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022