Blind Video Temporal Consistency via Deep Video Prior

Overview

deep-video-prior (DVP)

Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior

PyTorch implementation | paper | project website

Introduction

Our method is a general framework to improve the temporal consistency of video processed by image algorithms. For example, combining image colorization or image dehazing algorithm with our framework, we can achieve the goal of video colorization or video dehazing.

Dependencey

Environment

This code is based on tensorflow. It has been tested on Ubuntu 18.04 LTS.

Anaconda is recommended: Ubuntu 18.04 | Ubuntu 16.04

After installing Anaconda, you can setup the environment simply by

conda env create -f environment.yml
conda activate deep-video-prior

Download VGG model

cd deep-video-prior
python download_VGG.py
unzip VGG_Model.zip

Inference

Demo

bash test.sh

The results are placed in ./result

Use your own data

For the video with unimodal inconsistency:

python dvp_video_consistency.py --input PATH_TO_YOUR_INPUT_FOLDER --processed PATH_TO_YOUR_PROCESSED_FOLDER --task NAME_OF_YOUR_MODEL  --output ./result/OWN_DATA

For the video with multimodal inconsistency:

python dvp_video_consistency.py --input PATH_TO_YOUR_INPUT_FOLDER --processed PATH_TO_YOUR_PROCESSED_FOLDER --task NAME_OF_YOUR_MODEL --with_IRT 1 --IRT_initialization 1 --output ./result/OWN_DATA

Other information

  -h, --help            show this help message and exit
  --task TASK           Name of task
  --input INPUT         Dir of input video
  --processed PROCESSED
                        Dir of processed video
  --output OUTPUT       Dir of output video
  --use_gpu USE_GPU     Use gpu or not
  --loss {perceptual,l1,l2}
                        Chooses which loss to use. perceptual, l1, l2
  --network {unet}      Chooses which model to use. unet, fcn
  --coarse_to_fine_speedup COARSE_TO_FINE_SPEEDUP
                        Use coarse_to_fine_speedup for training
  --with_IRT WITH_IRT   Sse IRT or not, set this to 1 if you want to solve
                        multimodal inconsistency
  --IRT_initialization IRT_INITIALIZATION
                        Sse initialization for IRT
  --large_video LARGE_VIDEO
                        Set this to 1 when the number of video frames are
                        large, e.g., more than 1000 frames
  --save_freq SAVE_FREQ
                        Save frequency of epochs
  --max_epoch MAX_EPOCH
                        The max number of epochs for training
  --format FORMAT       Format of output image

Citation

If you find this work useful for your research, please cite:

@inproceedings{lei2020dvp,
  title={Blind Video Temporal Consistency via Deep Video Prior},
  author={Lei, Chenyang and Xing, Yazhou and Chen, Qifeng},
  booktitle={Advances in Neural Information Processing Systems},
  year={2020}
}                

Contact

Please contact me if there is any question (Chenyang Lei, [email protected])

Beyond the tasks we evaluated

Researcher found that Blind Temporal Consistency (e.g., DVP) can be applied to many more tasks!

Owner
Chenyang LEI
CS Ph.D. student at HKUST
Chenyang LEI
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
Do you like Quick, Draw? Well what if you could train/predict doodles drawn inside Streamlit? Also draws lines, circles and boxes over background images for annotation.

Streamlit - Drawable Canvas Streamlit component which provides a sketching canvas using Fabric.js. Features Draw freely, lines, circles, boxes and pol

Fanilo Andrianasolo 325 Dec 28, 2022
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
PyTorch trainer and model for Sequence Classification

PyTorch-trainer-and-model-for-Sequence-Classification After cloning the repository, modify your training data so that the training data is a .csv file

NhanTieu 2 Dec 09, 2022
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022