Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Overview

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations

This repo contains the Pytorch implementation of our paper:

Revisiting Contrastive Methods for UnsupervisedLearning of Visual Representations

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis and Luc Van Gool.

Contents

  1. Introduction
  2. Key Results
  3. Installation
  4. Training
  5. Evaluation
  6. Model Zoo
  7. Citation

Introduction

Contrastive self-supervised learning has outperformed supervised pretraining on many downstream tasks like segmentation and object detection. However, current methods are still primarily applied to curated datasets like ImageNet. We first study how biases in the dataset affect existing methods. Our results show that an approach like MoCo works surprisingly well across: (i) object- versus scene-centric, (ii) uniform versus long-tailed and (iii) general versus domain-specific datasets. Second, given the generality of the approach, we try to realize further gains. We show that learning additional invariances - through the use of multi-scale cropping, stronger augmentations and nearest neighbors - improves the representations. Finally, we observe that MoCo learns spatially structured representations when trained with a multi-crop strategy. The representations can be used for semantic segment retrieval and video instance segmentation without finetuning. Moreover, the results are on par with specialized models. We hope this work will serve as a useful study for other researchers.

Key Results

  • Scene-centric Data: We do not observe any indications that contrastive pretraining suffers from using scene-centric image data. This is in contrast to prior belief. Moreover, if the downstream data is non-object-centric, pretraining on scene-centric datasets even outperforms ImageNet pretraining.
  • Dense Representations: The multi-scale cropping strategy allows the model to learn spatially structured representations. This questions a recent trend that proposed additional losses at a denser level in the image. The representations can be used for semantic segment retrieval and video instance segmentation without any finetuning.
  • Additional Invariances: We impose additional invariances by exploring different data augmentations and nearest neighbors to boost the performance.
  • Transfer Performance: We observed that if a model obtains improvements for the downstream classification tasks, the same improvements are not guarenteed for other tasks (e.g. semantic segmentation) and vice versa.

Installation

The Python code runs with recent Pytorch versions, e.g. 1.6. Assuming Anaconda, the most important packages can be installed as:

conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.2 -c pytorch
conda install -c conda-forge opencv           # For evaluation
conda install matplotlib scipy scikit-learn   # For evaluation

We refer to the environment.yml file for an overview of the packages we used to reproduce our results. The code was run on 2 Tesla V100 GPUs.

Training

Now, we will pretrain on the COCO dataset. You can download the dataset from the official website. Several scripts in the scripts/ directory are provided. It contains the vanilla MoCo setup and our additional modifications for both 200 epochs and 800 epochs of training. First, modify --output_dir and the dataset location in each script before executing them. Then, run the following command to start the training for 200 epochs:

sh scripts/ours_coco_200ep.sh # Train our model for 200 epochs.

The training currently supports:

  • MoCo
  • + Multi-scale constrained cropping
  • + AutoAugment
  • + kNN-loss

A detailed version of the pseudocode can be found in Appendix B.

Evaluation

We perform the evaluation for the following downstream tasks: linear classification (VOC), semantic segmentation (VOC and Cityscapes), semantic segment retrieval and video instance segmentation (DAVIS). More details and results can be found in the main paper and the appendix.

Linear Classifier

The representations can be evaluated under the linear evaluation protocol on PASCAL VOC. Please visit the ./evaluation/voc_svm directory for more information.

Semantic Segmentation

We provide code to evaluate the representations for the semantic segmentation task on the PASCAL VOC and Cityscapes datasets. Please visit the ./evaluation/segmentation directory for more information.

Segment Retrieval

In order to obtain the results from the paper, run the publicly available code with our weights as the initialization of the model. You only need to adapt the amount of clusters, e.g. 5.

Video Instance Segmentation

In order to obtain the results from the paper, run the publicly available code from Jabri et al. with our weights as the initialization of the model.

Model Zoo

Several pretrained models can be downloaded here. For a fair comparison, which takes the training duration into account, we refer to Figure 5 in the paper. More results can be found in Table 4 and Table 9.

Method Epochs VOC SVM VOC mIoU Cityscapes mIoU DAVIS J&F Download link
MoCo 200 76.1 66.2 70.3 - Model 🔗
Ours 200 85.1 71.9 72.2 - Model 🔗
MoCo 800 81.0 71.1 71.3 63.2 Model 🔗
Ours 800 85.9 73.5 72.3 66.2 Model 🔗

Citation

This code is based on the MoCo repository. If you find this repository useful for your research, please consider citing the following paper(s):

@article{vangansbeke2021revisiting,
  title={Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations},
  author={Van Gansbeke, Wouter and Vandenhende, Simon and Georgoulis, Stamatios and Van Gool, Luc},
  journal={arxiv preprint arxiv:2106.05967},
  year={2021}
}
@inproceedings{he2019moco,
  title={Momentum Contrast for Unsupervised Visual Representation Learning},
  author={Kaiming He and Haoqi Fan and Yuxin Wu and Saining Xie and Ross Girshick},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year={2019}
}

For any enquiries, please contact the main authors.

Extra

  • For an overview on self-supervised learning (SSL), have a look at the overview repository.
  • Interested in self-supervised semantic segmentation? Check out our recent work: MaskContrast.
  • Interested in self-supervised classification? Check out SCAN.
  • Other great SSL repositories: MoCo, SupContrast, SeLa, SwAV and many more here.

License

This software is released under a creative commons license which allows for personal and research use only. You can view a license summary here. Part of the code was based on MoCo. Check it out for more details.

Acknoledgements

This work was supported by Toyota, and was carried out at the TRACE Lab at KU Leuven (Toyota Research on Automated Cars in Europe - Leuven).

Owner
Wouter Van Gansbeke
PhD researcher at KU Leuven. Especially interested in computer vision, machine learning and deep learning. Working on self-supervised and multi-task learning.
Wouter Van Gansbeke
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022