:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

Overview

R²SQL

The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021)

Requirements

The model is tested in python 3.6 with following requirements:

torch==1.0.0
transformers==2.10.0
sqlparse
pymysql
progressbar
nltk
numpy
six
spacy

All experiments on SParC and CoSQL datasets were run on NVIDIA V100 GPU with 32GB GPU memory.

  • Tips: The 16GB GPU memory may appear out-of-memory error.

Setup

The SParC and CoSQL experiments in two different folders, you need to download different datasets from [SParC | CoSQL] to the {sparc|cosql}/data folder separately. Another related data file could be download from EditSQL. Then, download the database sqlite files from [here] as data/database.

Download Pretrained BERT model from [here] as model/bert/data/annotated_wikisql_and_PyTorch_bert_param/pytorch_model_uncased_L-12_H-768_A-12.bin.

Download Glove embeddings file (glove.840B.300d.txt) and change the GLOVE_PATH for your own path in all scripts.

Download Reranker models from [SParC reranker | CoSQL reranker] as submit_models/reranker_roberta.pt, besides the roberta-base model could download from here for ./[sparc|cosql]/local_param/.

Usage

Train the model from scratch.

./sparc_train.sh

Test the model for the concrete checkpoint:

./sparc_test.sh

then the dev prediction file will be appeared in results folder, named like save_%d_predictions.json.

Get the evaluation result from the prediction file:

./sparc_evaluate.sh

the final result will be appeared in results folder, named *.eval.

Similarly, the CoSQL experiments could be reproduced in same way.


You could download our trained checkpoint and results in here:

Reranker

If your want train your own reranker model, you could download the training file from here:

Then you could train, test and predict it:

train:

python -m reranker.main --train --batch_size 64 --epoches 50

test:

python -m reranker.main --test --batch_size 64

predict:

python -m reranker.predict

Improvements

We have improved the origin version (descripted in paper) and got more performance improvements 🥳 !

Compare with the origin version, we have made the following improvements:

  • add the self-ensemble strategy for prediction, which use different epoch checkpoint to get final result. In order to easily perform this strategy, we remove the task-related representation in Reranker module.
  • remove the decay function in DCRI, we find that DCRI is unstable with decay function, so we let DCRI degenerate into vanilla cross attention.
  • replace the BERT-based with RoBERTa-based model for Reranker module.

The final performance comparison on dev as follows:

SParC CoSQL
QM IM QM IM
EditSQL 47.2 29.5 39.9 12.3
R²SQL v1 (origin paper) 54.1 35.2 45.7 19.5
R²SQL v2 (this repo) 54.0 35.2 46.3 19.5
R²SQL v2 + ensemble 55.1 36.8 47.3 20.9

Citation

Please star this repo and cite paper if you want to use it in your work.

Acknowledgments

This implementation is based on "Editing-Based SQL Query Generation for Cross-Domain Context-Dependent Questions" EMNLP 2019.

Owner
huybery
Understanding & Generating Language.
huybery
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022