A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

Related tags

Deep LearningPoseRBPF
Overview

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF

Citing PoseRBPF

If you find the PoseRBPF code useful, please consider citing:

@inproceedings{deng2019pose,
author    = {Xinke Deng and Arsalan Mousavian and Yu Xiang and Fei Xia and Timothy Bretl and Dieter Fox},
title     = {PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking},
booktitle = {Robotics: Science and Systems (RSS)},
year      = {2019}
}
@inproceedings{deng2020self,
author    = {Xinke Deng and Yu Xiang and Arsalan Mousavian and Clemens Eppner and Timothy Bretl and Dieter Fox},
title     = {Self-supervised 6D Object Pose Estimation for Robot Manipulation},
booktitle = {International Conference on Robotics and Automation (ICRA)},
year      = {2020}
}

Installation

git clone https://github.com/NVlabs/PoseRBPF.git --recursive

Install dependencies:

  • install anaconda according to the official website.
  • create the virtual env with pose_rbpf_env.yml:
conda env create -f pose_rbpf_env.yml
conda activate pose_rbpf_env
  • compile the YCB Renderer according to the instruction.
  • compile the utility functions with:
sh build.sh

Download

Downolad files as needed. Extract CAD models under the cad_models directory, and extract model weights under the checkpoints directory.

A quick demo on the YCB Video Dataset

demo

  • The demo shows tracking 003_cracker_box on YCB Video Dataset.
  • Run script download_demo.sh to download checkpoint (434 MB), CAD models (743 MB), 2D detections (13 MB), and necessary data (3 GB) for the demo:
./scripts/download_demo.sh
  • Then you should have files organized like:
├── ...
├── PoseRBPF
|   |── cad_models
|   |   |── ycb_models
|   |   └── ...
|   |── checkpoints
|   |   |── ycb_ckpts_roi_rgbd
|   |   |── ycb_codebooks_roi_rgbd
|   |   |── ycb_configs_roi_rgbd
|   |   └── ... 
|   |── detections
|   |   |── posecnn_detections
|   |   |── tless_retina_detections 
|   |── config                      # configuration files for training and DPF
|   |── networks                    # auto-encoder networks
|   |── pose_rbpf                   # particle filters
|   └── ...
|── YCB_Video_Dataset               # to store ycb data
|   |── cameras
|   |── data 
|   |── image_sets 
|   |── keyframes 
|   |── poses
|   └── ...
└── ...
  • Run demo with 003_cracker_box. The results will be stored in ./results/
./scripts/run_demo.sh

Online Real-world Pose Estimation using ROS

ros_demo

  • Due to the incompatibility between ROS Kinetic and Python 3, the ROS node only runs with Python 2.7. We first create the virtual env with pose_rbpf_env_py2.yml:
conda env create -f pose_rbpf_env_py2.yml
conda activate pose_rbpf_env_py2
  • compile the YCB Renderer according to the instruction.
  • compile the utility functions with:
sh build.sh
  • Make sure you can run the demo above first.
  • Install ROS if it's not there:
sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'
sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654
sudo apt-get update
sudo apt-get install ros-kinetic-desktop-full
  • Update python packages:
conda install -c auto catkin_pkg
pip install -U rosdep rosinstall_generator wstool rosinstall six vcstools
pip install msgpack
pip install empy
  • Source ROS (every time before launching the node):
source /opt/ros/kinetic/setup.bash
  • Initialze rosdep:
sudo rosdep init
rosdep update

Single object tracking demo:

  • Download demo rosbag:
./scripts/download_ros_demo.sh
  • Run PoseCNN node (with roscore running in another terminal, download PoseCNN weights first):
./scripts/run_ros_demo_posecnn.sh
  • Run PoseRBPF node for RGB-D tracking (with roscore running in another terminal):
./scripts/run_ros_demo.sh
  • (Optional) For RGB tracking run this command instead:
./scripts/run_ros_demo_rgb.sh
  • Run RVIZ in the PoseRBPF directory:
rosrun rviz rviz -d ./ros/tracking.rviz
  • Once you see *** PoseRBPF Ready ... in the PoseRBPF terminal, run rosbag in another terminal, then you should be able to see the tracking demo:
rosbag play ./ros_data/demo_single.bag

Multiple object tracking demo:

  • Download demo rosbag:
./scripts/download_ros_demo_multiple.sh
  • Run PoseCNN node (with roscore running in another terminal, download PoseCNN weights first):
./scripts/run_ros_demo_posecnn.sh
  • Run PoseRBPF node with self-supervised trained RGB Auto-encoder weights:
./scripts/run_ros_demo_rgb_multiple_ssv.sh
  • (Optional) Run PoseRBPF node with RGB-D Auto-encoder weights instead:
./scripts/run_ros_demo_multiple.sh
  • (Optional) Run PoseRBPF node with RGB Auto-encoder weights instead:
./scripts/run_ros_demo_rgb_multiple.sh
  • Run RVIZ in the PoseRBPF directory:
rosrun rviz rviz -d ./ros/tracking.rviz
  • Once you see *** PoseRBPF Ready ... in the PoseRBPF terminal, run rosbag in another terminal, then you should be able to see the tracking demo:
rosbag play ./ros_data/demo_multiple.bag

Note that PoseRBPF takes certain time to initialize each object before tracking. You can pause the ROS bag by pressing space for initialization, and then press space again to resume tracking.

Testing on the YCB Video Dataset

  • Download checkpoints from the google drive folder (ycb_rgbd_full.tar.gz or ycb_rgb_full.tar.gz) and unzip to the checkpoint directory.
  • Download all the data in the YCB Video Dataset so the ../YCB_Video_Dataset/data folder contains all the sequences.
  • Run RGB-D tracking (use 002_master_chef_can as an example here):
sh scripts/test_ycb_rgbd/val_ycb_002_rgbd.sh 0 1
  • Run RGB tracking (use 002_master_chef_can as an example here):
sh scripts/test_ycb_rgb/val_ycb_002_rgb.sh 0 1

Testing on the T-LESS Dataset

  • Download checkpoints from the google drive folder (tless_rgbd_full.tar.gz or tless_rgb_full.tar.gz) and unzip to the checkpoint directory.
  • Download all the data in the T-LESS Dataset so the ../TLess/ folder contains all the sequences.
  • Download all the models for T-LESS objects from the google drive folder.
  • Then you should have files organized like:
├── ...
├── PoseRBPF
|   |── cad_models
|   |   |── ycb_models
|   |   |── tless_models
|   |   └── ...
|   |── checkpoints
|   |   |── tless_ckpts_roi_rgbd
|   |   |── tless_codebooks_roi_rgbd
|   |   |── tless_configs_roi_rgbd
|   |   └── ... 
|   |── detections
|   |   |── posecnn_detections
|   |   |── tless_retina_detections 
|   |── config                      # configuration files for training and DPF
|   |── networks                    # auto-encoder networks
|   |── pose_rbpf                   # particle filters
|   └── ...
|── YCB_Video_Dataset               # to store ycb data
|   |── cameras  
|   |── data 
|   |── image_sets 
|   |── keyframes 
|   |── poses               
|   └── ...   
|── TLess               # to store tless data
|   |── t-less_v2 
|── tless_ckpts_roi_rgbd
|   |   |── test_primesense
|   |   └── ... 
|   └── ...        
└── ...
  • Run RGB-D tracking (use obj_01 as an example here):
sh scripts/test_tless_rgbd/val_tless_01_rgbd.sh 0 1
  • Run RGB tracking (use obj_01 as an example here):
sh scripts/test_tless_rgb/val_tless_01_rgb.sh 0 1

Testing on the DexYCB Dataset

  • Download checkpoints from the google drive folder (ycb_rgbd_full.tar.gz or ycb_rgb_full.tar.gz) and unzip to the checkpoint directory.

  • Download the DexYCB dataset from here.

  • Download PoseCNN results on the DexYCB dataset from here.

  • Create a symlink for the DexYCB dataset and the PoseCNN results

    cd $ROOT/data/DEX_YCB
    ln -s $dex_ycb_data data
    ln -s $results_posecnn_data results_posecnn
  • Install PyTorch PoseCNN layers according to the instructions here.

  • Run RGB-D tracking:

    ./scripts/test_dex_rgbd/dex_ycb_test_rgbd_s0.sh $GPU_ID
    
  • Run RGB tracking:

    ./scripts/test_dex_rgb/dex_ycb_test_rgb_s0.sh $GPU_ID
    

Training

  • Download microsoft coco dataset 2017 val images from here for data augmentation.
  • Store the folder val2017 in ../coco/
  • Run training example for 002_master_chef_can in the YCB objects. The training should be able to run on one single NVIDIA TITAN Xp GPU:
sh scripts/train_ycb_rgbd/train_script_ycb_002.sh

Acknowledgements

We have referred to part of the RoI align code from maskrcnn-benchmark.

License

PoseRBPF is licensed under the NVIDIA Source Code License - Non-commercial.

Owner
NVIDIA Research Projects
NVIDIA Research Projects
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 06, 2023
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions This is the official repository of PRIME, the data agumentation method introduced i

Apostolos Modas 34 Oct 30, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022