Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

Overview

TimeLens: Event-based Video Frame Interpolation

TimeLens

This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper TimeLens: Event-based Video Frame Interpolation by Stepan Tulyakov*, Daniel Gehrig*, Stamatios Georgoulis, Julius Erbach, Mathias Gehrig, Yuanyou Li, and Davide Scaramuzza.

For more information, visit our project page.

Citation

A pdf of the paper is available here. If you use this dataset, please cite this publication as follows:

@Article{Tulyakov21CVPR,
  author        = {Stepan Tulyakov and Daniel Gehrig and Stamatios Georgoulis and Julius Erbach and Mathias Gehrig and Yuanyou Li and
                  Davide Scaramuzza},
  title         = {{TimeLens}: Event-based Video Frame Interpolation},
  journal       = "IEEE Conference on Computer Vision and Pattern Recognition",
  year          = 2021,
}

Google Colab

A Google Colab notebook is now available here. You can upsample your own video and events from you gdrive.

Gallery

For more examples, visit our project page.

coke paprika pouring water_bomb_floor

Installation

Install the dependencies with

cuda_version=10.2
conda create -y -n timelens python=3.7
conda activate timelens
conda install -y pytorch torchvision cudatoolkit=$cuda_version -c pytorch
conda install -y -c conda-forge opencv scipy tqdm click

Test TimeLens

First start by cloning this repo into a new folder

mkdir ~/timelens/
cd ~/timelens
git clone https://github.com/uzh-rpg/rpg_timelens

Then download the checkpoint and data to the repo

cd rpg_timelens
wget http://rpg.ifi.uzh.ch/timelens/data/checkpoint.bin
wget http://rpg.ifi.uzh.ch/timelens/data/example_github.zip
unzip example_github.zip 
rm -rf example_github.zip

Running Timelens

To run timelens simply call

skip=0
insert=7
python -m timelens.run_timelens checkpoint.bin example/events example/images example/output $skip $insert

This will generate the output in example/output. The first four variables are the checkpoint file, image folder and event folder and output folder respectively. The variables skip and insert determine the number of skipped vs. inserted frames, i.e. to generate a video with an 8 higher framerate, 7 frames need to be inserted, and 0 skipped.

The resulting images can be converted to a video with

ffmpeg -i example/output/%06d.png timelens.mp4

the resulting video is timelens.mp4.

Dataset

hsergb

Download the dataset from our project page. The dataset structure is as follows

.
├── close
│   └── test
│       ├── baloon_popping
│       │   ├── events_aligned
│       │   └── images_corrected
│       ├── candle
│       │   ├── events_aligned
│       │   └── images_corrected
│       ...
│
└── far
    └── test
        ├── bridge_lake_01
        │   ├── events_aligned
        │   └── images_corrected
        ├── bridge_lake_03
        │   ├── events_aligned
        │   └── images_corrected
        ...

Each events_aligned folder contains events files with template filename %06d.npz, and images_corrected contains image files with template filename %06d.png. In events_aligned each event file with index n contains events between images with index n-1 and n, i.e. event file 000001.npz contains events between images 000000.png and 000001.png. Moreover, images_corrected also contains timestamp.txt where image timestamps are stored. Note that in some folders there are more image files than event files. However, the image stamps in timestamp.txt should match with the event files and the additional images can be ignored.

For a quick test download the dataset to a folder using the link sent by email.

wget download_link.zip -O /tmp/dataset.zip
unzip /tmp/dataset.zip -d hsergb/

And run the test

python test_loader.py --dataset_root hsergb/ \ 
                      --dataset_type close \ 
                      --sequence spinning_umbrella \ 
                      --sample_index 400

This should open a window visualizing aligned events with a single image.

Owner
Robotics and Perception Group
Robotics and Perception Group
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

4.8k Jan 07, 2023
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
OpenDILab Multi-Agent Environment

Go-Bigger: Multi-Agent Decision Intelligence Environment GoBigger Doc (中文版) Ongoing 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent

OpenDILab 441 Jan 05, 2023
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
Api for getting bin info and getting encrypted card details for adyen.

Bin Info And Adyen Cse Enc Python api for getting bin info and getting encrypted

Roldex Stark 8 Dec 30, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022