Python code for loading the Aschaffenburg Pose Dataset.

Overview

Aschaffenburg Pose Dataset (APD) DOI

This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and a description can be found at Zenodo. It contains trajectories as well as body poses of pedestrians and cyclists in road traffic recorded in Aschaffenburg, Germany. It is appropriate for training and testing methods for trajectory forecasting and intention prediction of vulnerable road users (VRUs) based on the past trajectory and body poses.

The body posture of the pedestrians and cyclists is available in the form of 2D and 3D poses. The 2D poses contain joint positions in an image coordinate system, while the 3D poses contain actual three-dimensional positions. The joints of the poses are shown in the picture below. The left skeleton shows the joints of the 2D poses and the right one shows the joints of the 3D poses. A detailed description and evaluation of the pose estimation method can be found in [1]. In addition to the trajectories and the poses, manually created labels of the respective motion states are included.

Usage

First download the dataset here and unzip the file. The actual Python module for loading and filtering the dataset can be found in the folder APD. In examples you find the example of how to use the code (plot_trajectories.py). The example loads the dataset from the provided path and plots the smoothed head trajectories in 2D from a bird's eye view (the poses are not visualized here). The trajectories can be filtered by VRU type and set using optional arguments:

Usage: python3 examples/plot_trajectories.py [-h] [-v VRU_TYPES] [-s SETS] path

Pipeline Arguments

positional arguments:
  path                  path to json files

optional arguments:
  -h, --help            show this help message and exit
  -v VRU_TYPES, --vru_types VRU_TYPES
                        select certain vru types for plotting ['ped', 'bike']
  -s SETS, --sets SETS  select certain sets for plotting ['train',
                        'validation', 'test']

Citation

If you find this dataset useful, please cite this paper (and refer the data as Aschaffenburg Pose Dataset or APD):

Kress, V. ; Zernetsch, S. ; Doll, K. ; Sick, B. : Pose Based Trajectory Forecast of Vulnerable Road Users Using Recurrent Neural Networks. In: Pattern Recognition. ICPR International Workshops and Challenges, Springer International Publishing, 2020, pp. 57-71

Similar Datasets

Acknowledgment

This work was supported by “Zentrum Digitalisierung.Bayern”. In addition, the work is backed by the project DeCoInt2 , supported by the German Research Foundation (DFG) within the priority program SPP 1835: “Kooperativ interagierende Automobile”, grant numbers DO 1186/1-2 and SI 674/11-2.

References

[1] Kress, V. ; Jung, J. ; Zernetsch, S. ; Doll, K. ; Sick, B. : Human Pose Estimation in Real Traffic Scenes. In: IEEE Symposium Series on Computational Intelligence (SSCI), 2018, pp. 518–523, doi: 10.1109/SSCI.2018.8628660

For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
TGS Salt Identification Challenge

TGS Salt Identification Challenge This is an open solution to the TGS Salt Identification Challenge. Note Unfortunately, we can no longer provide supp

neptune.ai 123 Nov 04, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay 3rd Place Solution for ICCV 2021 Workshop SS

Rifki Kurniawan 6 Nov 10, 2022
[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

CoCLR: Self-supervised Co-Training for Video Representation Learning This repository contains the implementation of: InfoNCE (MoCo on videos) UberNCE

Tengda Han 271 Jan 02, 2023
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy for sma

THUDM 540 Dec 30, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022