Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Related tags

Deep LearningGeMCL
Overview




Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

In this repository we provide PyTorch implementations for GeMCL; a generative approach for meta-continual learning. The directory outline is as follows:

root
 ├── code                 # The folder containing all pytorch implementations
       ├── datasets           # The path containing Dataset classes and train/test parameters for each dataset
            ├── omnigolot
                  ├── TrainParams.py  # omniglot training parameters configuration
                  ├── TestParams.py   # omniglot testing parameters configuration

            ├── mini-imagenet
                  ├── TrainParams.py  # mini-imagenet training parameters configuration
                  ├── TestParams.py   # mini-imagenet testing parameters configuration
            ├── cifar
                  ├── TrainParams.py  # cifar 100 training parameters configuration
                  ├── TestParams.py   # cifar 100 testing parameters configuration

       ├── model              # The path containing proposed models
       ├── train.py           # The main script for training
       ├── test.py            # The main script for testing
       ├── pretrain.py        # The main script for pre-training

 ├── datasets             # The location in which datasets are placed
       ├── omniglot
       ├── miniimagenet
       ├── cifar

 ├── experiments          # The location in which accomplished experiments are stored
       ├── omniglot
       ├── miniimagenet
       ├── cifar

In the following sections we will first provide details about how to setup the dataset. Then the instructions for installing package dependencies, training and testing is provided.

Configuring the Dataset

In this paper we have used Omniglot, CIFAR-100 and Mini-Imagenet datasets. The omniglot and cifar-100 are light-weight datasets and are automatically downloaded into datasets/omniglot/ or datasets/cifar/ whenever needed. however the mini-imagenet dataset need to be manually downloaded and placed in datasets/miniimagenet/. The following instructions will show how to properly setup this dataset:

  • First download the images from this link (provided by the owners) and the train.csv,val.csv,test.csv splits from this link.

  • Extract and place the downloaded files directly under datasets/miniimagenet/. (We expect to have train.csv, val.csv, test.csv and images folder under this path)

Reading directly from the disk every time we need this dataset is an extremely slow procedure. To solve this issue we use a preprocessing step, in which the images are first shrinked to 100 pixels in the smaller dimension (without cahnging the aspect ratio), and then converted to numpy npy format. The code for this preprocessing is provided in code directory and should be executed as follows:

cd code
python genrate_img.py ../datasets/miniimagenet ../datasets/miniimagenet

Wait until the success message for test, train and validation appears and then we are ready to go.

Installing Prerequisites

The following packages are required:

  • opencv-python==4.5.1
  • torch==1.7.1+cu101
  • tensorboard==2.4.1
  • pynvml==8.0.4
  • matplotlib==3.3.2
  • tqdm==4.55.1
  • scipy==1.6.0
  • torchvision==0.8.2+cu101

Training and Testing

The first step for training or testing is to confgure the desired parameters. We have seperated the training/testing parameters for each dataset and placed them under code/datasets/omniglot and code/datasets/miniimagenet. For example to change the number of meta-training episodes on omniglot dataset, one may do as following:

  • Open code/datasets/omniglot/TrainParams.py

  • Find the line self.meta_train_steps and change it's value.

Setting the training model is done in the same way by changing self.modelClass value. We have provided the following models in the code/model/ path:

file path model name in the paper
code/model/Bayesian.py GeMCL predictive
code/model/MAP.py GeMCL MAP
code/model/LR.py MTLR
code/model/PGLR.py PGLR
code/model/ProtoNet.py Prototypical

Training Instructions

To perform training first configure the training parameters in code/datasets/omniglot/TrainParams.py or code/datasets/miniimagenet/TrainParams.py for omniglot and mini-magenet datasets respectively. In theese files, self.experiment_name variable along with a Date prefix will determine the folder name in which training logs are stored.

Now to start training run the following command for omniglot (In all our codes the M or O flag represents mini-imagene and omniglot datasets respectively):

cd code
python train.py O

and the following for mini-imagenet:

cd code
python train.py M

The training logs and checkpoints are stored in a folder under experiments/omniglot/ or experiments/miniimagenet/ with the name specified in self.experiment_name. We have already attached some trained models with the same settings reported in the paper. The path and details for these models are as follows:

Model Path Details
experiments/miniimagenet/imagenet_bayesian_final GeMCL predictive trained on mini-imagenet
experiments/miniimagenet/imagenet_map_final GeMCL MAP trained on mini-imagenet
experiments/miniimagenet/imagenet_PGLR_final PGLR trained on mini-imagenet
experiments/miniimagenet/imagenet_MTLR_final MTLR trained on mini-imagenet
experiments/miniimagenet/imagenet_protonet_final Prototypical trained on mini-imagenet
experiments/miniimagenet/imagenet_pretrain_final pretrained model on mini-imagenet
experiments/miniimagenet/imagenet_Bayesian_OMLBackbone GeMCL predictive trained on mini-imagenet with OML backbone
experiments/miniimagenet/imagenet_random random model compatible to mini-imagenet but not trained previously
experiments/omniglot/omniglot_Bayesian_final GeMCL predictive trained on omniglot
experiments/omniglot/omniglot_MAP_final GeMCL MAP trained on omniglot
experiments/omniglot/omniglot_PGLR_final PGLR trained on omniglot
experiments/omniglot/omniglot_MTLR_final MTLR trained on omniglot
experiments/omniglot/omniglot_Protonet_final Prototypical trained on omniglot
experiments/omniglot/omniglot_Pretrain_final pretrained model on omniglot
experiments/omniglot/Omniglot_Bayesian_OMLBackbone GeMCL predictive trained on omniglot with OML backbone
experiments/omniglot/omniglot_random random model compatible to omniglot but not trained previously
experiments/omniglot/omniglot_bayesian_28 GeMCL predictive trained on omniglot with 28x28 input

Testing Instructions

To evaluate a previously trained model, we can use test.py by determining the path in which the model was stored. As an example consider the following structure for omniglot experiments.

root
 ├── experiments
       ├── omniglot
            ├── omniglot_Bayesian_final

Now to test this model run:

cd code
python test.py O ../experiments/omniglot/omniglot_Bayesian_final/

At the end of testing, the mean accuracy and std among test epsiodes will be printed.

Note: Both test.py and train.py use TrainParams.py for configuring model class. Thus before executing test.py make sure that TrainParams.py is configured correctly.

Pre-training Instructions

To perform a preitraining you can use

cd code
python pretrain.py O

The pre-training configuarations are also available in TrainParams.py.

References

Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022