Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Overview

Lane Follower

This code is for the lane follower, including perception and control, as shown below.

Structure

Environment

  1. Hardware
    • Industrial Camera
    • Intel-NUC(10FNK)
  2. Software
    • Ubuntu18.04
    • Python3.6
    • OpenCV4.2
    • PyTorch1.8.1

    See environment.txt for details.

How to use

A. Offline Testing

The code supports the offline testing, which takes the offline video as input and output the demo video.

python offline_test.py

B. OnLine Testing

The code also supports the online testing, which takes the real-time video streaming from the industrial camera as input and controls the vehicle.

python online_test.py

C. Demo

You can find the offline testing video and the corresponding demo video here [n25o].

demo

Details

Detailed structure

detailed-structure

Code Info

  • offline_test.py --- Offline testing

  • online_test.py --- Online testing

  • basic_function --- Some Basic Function

    • show_img(name, img): Show the image
    • find_files(directory, pattern): Method to find target files in one directory, including subdirectory
    • get_M_Minv(): Get Perspective Transform
    • draw_area(img_origin, img_line, Minv, left_fit, right_fit): Draw the road area in the image
    • draw_demo(img_result, img_bin, img_canny, img_line, img_line_warp, img_bev_result, curvature, distance_from_center, steer): Generate the Demo image
  • lib_camera --- Class for the industrial camera

    • open(): Open the camera
    • grab(): Grab an image from the camera
    • close(): Close the camera
  • mvsdk --- Official lib for the industrial camera

  • lib_can --- Class for the CAN

    • OpenDevice(): Open the CAN device
    • InitCAN(can_idx=0): Init the CAN
    • StartCan(can_idx=0): Start the CAN
    • Send(can_idx, id, frame_len, data): Send messages to CAN
    • Listen(can_idx, id, try_cnt=10): Receive messages from CAN
    • CloseDevice(): Close the CAN device
  • lib_LaneDetector --- Class for the lane detector

    • detect_line(img_input, steer, memory, debug=False): Main Function
    • pre_process(img, debug=False): Image Preprocessing
    • find_line(img, memory, debug=False): Detect the lane using Sliding Windows Methods
    • calculate_curv_and_pos(img_line, left_fit, right_fit): Calculate the curvature & distance from the center
  • lib_ObjectDetector --- Class for the traffic object detector based on YOLO5

    • load_model(): Load Yolo5 model from pytorch hub
    • detect(frame, img_area): Predict and analyze using yolo5
    • class_to_label(idx): Return the corresponding string label for a given label value
    • plot_detections(results, frame): Takes a frame and its results as input, and plots the bounding boxes and label on to the frame
  • lib_vehicle --- Class for the vehicle model and vehicle control

    • steer_cal(curvature, dist_from_center): Calculate the steer according to the curvature of the lane and the distance form the center
    • steer_ctrl(): Control the steer by sending the signal via CAN
    • steer_get(): Get the real steer of the vehicle via the CAN
  • libcontrolcan.so --- DLL for the CAN device

  • libMVSDK.so --- DLL for the industrial camera

Owner
Siqi Fan
Graduate Student @ IA, CAS (2019 ~ now) B.E. @ Shanghai Jiao Tong University (SJTU,2015~2019)
Siqi Fan
Objax Apache-2Objax (đŸ„‰19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp KrĂ€henbĂŒhl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022