git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

Related tags

Deep Learninglietorch
Overview

LieTorch: Tangent Space Backpropagation

Introduction

The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a multi-dimensional matrix of scalar elements, lietorch.SE3 is a multi-dimensional matrix of SE3 elements. We support common tensor manipulations such as indexing, reshaping, and broadcasting. Group operations can be composed into computation graphs and backpropagation is automatically peformed in the tangent space of each element. For more details, please see our paper:

Tangent Space Backpropagation for 3D Transformation Groups
Zachary Teed and Jia Deng, CVPR 2021

@inproceedings{teed2021tangent,
  title={Tangent Space Backpropagation for 3D Transformation Groups},
  author={Teed, Zachary and Deng, Jia},
  booktitle={Conference on Computer Vision and Pattern Recognition},
  year={2021},
}

Installation

Requirements:

  • Cuda >= 10.1 (with nvcc compiler)
  • PyTorch >= 1.6

We recommend installing within a virtual enviornment. Make sure you clone using the --recursive flag. If you are using Anaconda, the following command can be used to install all dependencies

git clone --recursive https://github.com/princeton-vl/lietorch.git
cd lietorch

conda create -n lie_env
conda activate lie_env
conda install scipy pyyaml pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

To run the examples, you will need OpenCV and Open3D. Depending on your operating system, OpenCV and Open3D can either be installed with pip or may need to be built from source

pip install opencv-python open3d

Installing:

Clone the repo using the --recursive flag and install using setup.py (may take up to 10 minutes)

git clone --recursive https://github.com/princeton-vl/lietorch.git
python setup.py install
./run_tests.sh

Overview

LieTorch currently supports the 3D transformation groups.

Group Dimension Action
SO3 3 rotation
RxSO3 4 rotation + scaling
SE3 6 rotation + translation
Sim3 7 rotation + translation + scaling

Each group supports the following operations:

Operation Map Description
exp g -> G exponential map
log G -> g logarithm map
inv G -> G group inverse
mul G x G -> G group multiplication
adj G x g -> g adjoint
adjT G x g*-> g* dual adjoint
act G x R3 -> R3 action on point (set)
act4 G x P3 -> P3 action on homogeneous point (set)

 

Simple Example:

Compute the angles between all pairs of rotation matrices

import torch
from lietorch import SO3

phi = torch.randn(8000, 3, device='cuda', requires_grad=True)
R = SO3.exp(phi)

# relative rotation matrix, SO3 ^ {100 x 100}
dR = R[:,None].inv() * R[None,:]

# 100x100 matrix of angles
ang = dR.log().norm(dim=-1)

# backpropogation in tangent space
loss = ang.sum()
loss.backward()

Examples

We provide real use cases in the examples directory

  1. Pose Graph Optimization
  2. Deep SE3/Sim3 Registrtion
  3. RGB-D SLAM / VO

Acknowledgements

Many of the Lie Group implementations are adapted from Sophus.

Owner
Princeton Vision & Learning Lab
Princeton Vision & Learning Lab
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement

Juntang Zhuang 116 Sep 06, 2022
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022