Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

Overview

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation

This repository contains MegEngine implementation of our paper:

hydrussoftware

Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation
Jiankun Li, Peisen Wang, Pengfei Xiong, Tao Cai, Ziwei Yan, Lei Yang, Jiangyu Liu, Haoqiang Fan, Shuaicheng Liu
CVPR 2022

arXiv | BibTeX

Datasets

The Proposed Dataset

Download

There are two ways to download the dataset(~400GB) proposed in our paper:

  • Download using shell scripts dataset_download.sh
sh dataset_download.sh

the dataset will be downloaded and extracted in ./stereo_trainset/crestereo

  • Download from BaiduCloud here(Extraction code: aa3g) and extract the tar files manually.

Disparity Format

The disparity is saved as .png uint16 format which can be loaded using opencv imread function:

def get_disp(disp_path):
    disp = cv2.imread(disp_path, cv2.IMREAD_UNCHANGED)
    return disp.astype(np.float32) / 32

Other Public Datasets

Other public datasets we use including

Dependencies

CUDA Version: 10.1, Python Version: 3.6.9

  • MegEngine v1.8.2
  • opencv-python v3.4.0
  • numpy v1.18.1
  • Pillow v8.4.0
  • tensorboardX v2.1
python3 -m pip install -r requirements.txt

We also provide docker to run the code quickly:

docker run --gpus all -it -v /tmp:/tmp ylmegvii/crestereo
shotwell /tmp/disparity.png

Inference

Download the pretrained MegEngine model from here and run:

python3 test.py --model_path path_to_mge_model --left img/test/left.png --right img/test/right.png --size 1024x1536 --output disparity.png

Training

Modify the configurations in cfgs/train.yaml and run the following command:

python3 train.py

You can launch a TensorBoard to monitor the training process:

tensorboard --logdir ./train_log

and navigate to the page at http://localhost:6006 in your browser.

Acknowledgements

Part of the code is adapted from previous works:

We thank all the authors for their awesome repos.

Citation

If you find the code or datasets helpful in your research, please cite:

@misc{Li2022PracticalSM,
      title={Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation},
      author={Jiankun Li and Peisen Wang and Pengfei Xiong and Tao Cai and Ziwei Yan and Lei Yang and Jiangyu Liu and Haoqiang Fan and Shuaicheng Liu},
      year={2022},
      eprint={2203.11483},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
This tool uses Deep Learning to help you draw and write with your hand and webcam.

This tool uses Deep Learning to help you draw and write with your hand and webcam. A Deep Learning model is used to try to predict whether you want to have 'pencil up' or 'pencil down'.

lmagne 169 Dec 10, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022