Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

Related tags

Deep LearningHAIS
Overview

HAIS

PWC PWC

Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresponding author. [arXiv]


Introduction

  • HAIS is an efficient and concise bottom-up framework (NMS-free and single-forward) for point cloud instance segmentation. It adopts the hierarchical aggregation (point aggregation and set aggregation) to generate instances and the intra-instance prediction for outlier filtering and mask quality scoring.

Framework

Learderboard

  • High speed. Thanks to the NMS-free and single-forward inference design, HAIS achieves the best inference speed among all existing methods. HAIS only takes 206 ms on RTX 3090 and 339 ms on TITAN X.
Method Per-frame latency on TITAN X
ASIS 181913 ms
SGPN 158439 ms
3D-SIS 124490 ms
GSPN 12702 ms
3D-BoNet 9202 ms
GICN 8615 ms
OccuSeg 1904 ms
PointGroup 452 ms
HAIS 339 ms

[ICCV21 presentation]

Update

2021.9.30:

  • Code is released.
  • With better CUDA optimization, HAIS now only takes 339 ms on TITAN X, much better than the latency reported in the paper (410 ms on TITAN X).

Installation

1) Environment

  • Python 3.x
  • Pytorch 1.1 or higher
  • CUDA 9.2 or higher
  • gcc-5.4 or higher

Create a conda virtual environment and activate it.

conda create -n hais python=3.7
conda activate hais

2) Clone the repository.

git clone https://github.com/hustvl/HAIS.git --recursive

3) Install the requirements.

cd HAIS
pip install -r requirements.txt
conda install -c bioconda google-sparsehash 

4) Install spconv

  • Verify the version of spconv.

    spconv 1.0, compatible with CUDA < 11 and pytorch < 1.5, is already recursively cloned in HAIS/lib/spconv in step 2) by default.

    For higher version CUDA and pytorch, spconv 1.2 is suggested. Replace HAIS/lib/spconv with this fork of spconv.

git clone https://github.com/outsidercsy/spconv.git --recursive
  Note:  In the provided spconv 1.0 and 1.2, spconv\spconv\functional.py is modified to make grad_output contiguous. Make sure you use the modified spconv but not the original one. Or there would be some bugs of optimization.
  • Install the dependent libraries.
conda install libboost
conda install -c daleydeng gcc-5 # (optional, install gcc-5.4 in conda env)
  • Compile the spconv library.
cd HAIS/lib/spconv
python setup.py bdist_wheel
  • Intall the generated .whl file.
cd HAIS/lib/spconv/dist
pip install {wheel_file_name}.whl

5) Compile the external C++ and CUDA ops.

cd HAIS/lib/hais_ops
export CPLUS_INCLUDE_PATH={conda_env_path}/hais/include:$CPLUS_INCLUDE_PATH
python setup.py build_ext develop

{conda_env_path} is the location of the created conda environment, e.g., /anaconda3/envs.

Data Preparation

1) Download the ScanNet v2 dataset.

2) Put the data in the corresponding folders.

  • Copy the files [scene_id]_vh_clean_2.ply, [scene_id]_vh_clean_2.labels.ply, [scene_id]_vh_clean_2.0.010000.segs.json and [scene_id].aggregation.json into the dataset/scannetv2/train and dataset/scannetv2/val folders according to the ScanNet v2 train/val split.

  • Copy the files [scene_id]_vh_clean_2.ply into the dataset/scannetv2/test folder according to the ScanNet v2 test split.

  • Put the file scannetv2-labels.combined.tsv in the dataset/scannetv2 folder.

The dataset files are organized as follows.

HAIS
├── dataset
│   ├── scannetv2
│   │   ├── train
│   │   │   ├── [scene_id]_vh_clean_2.ply & [scene_id]_vh_clean_2.labels.ply & [scene_id]_vh_clean_2.0.010000.segs.json & [scene_id].aggregation.json
│   │   ├── val
│   │   │   ├── [scene_id]_vh_clean_2.ply & [scene_id]_vh_clean_2.labels.ply & [scene_id]_vh_clean_2.0.010000.segs.json & [scene_id].aggregation.json
│   │   ├── test
│   │   │   ├── [scene_id]_vh_clean_2.ply 
│   │   ├── scannetv2-labels.combined.tsv

3) Generate input files [scene_id]_inst_nostuff.pth for instance segmentation.

cd HAIS/dataset/scannetv2
python prepare_data_inst.py --data_split train
python prepare_data_inst.py --data_split val
python prepare_data_inst.py --data_split test

Training

CUDA_VISIBLE_DEVICES=0 python train.py --config config/hais_run1_scannet.yaml 

Inference

1) To evaluate on validation set,

  • prepare the .txt instance ground-truth files as the following.
cd dataset/scannetv2
python prepare_data_inst_gttxt.py
  • set split and eval in the config file as val and True.

  • Run the inference and evaluation code.

CUDA_VISIBLE_DEVICES=0 python test.py --config config/hais_run1_scannet.yaml --pretrain $PATH_TO_PRETRAIN_MODEL$

Pretrained model: Google Drive / Baidu Cloud [code: sh4t]. mAP/mAP50/mAP25 is 44.1/64.4/75.7.

2) To evaluate on test set,

  • Set (split, eval, save_instance) as (test, False, True).
  • Run the inference code. Prediction results are saved in HAIS/exp by default.
CUDA_VISIBLE_DEVICES=0 python test.py --config config/hais_run1_scannet.yaml --pretrain $PATH_TO_PRETRAIN_MODEL$

Visualization

We provide visualization tools based on Open3D (tested on Open3D 0.8.0).

pip install open3D==0.8.0
python visualize_open3d.py --data_path {} --prediction_path {} --data_split {} --room_name {} --task {}

Please refer to visualize_open3d.py for more details.

Acknowledgement

The code is based on PointGroup and spconv.

Contact

If you have any questions or suggestions about this repo, please feel free to contact me ([email protected]).

Citation

@InProceedings{Chen_2021_ICCV,
    author    = {Chen, Shaoyu and Fang, Jiemin and Zhang, Qian and Liu, Wenyu and Wang, Xinggang},
    title     = {Hierarchical Aggregation for 3D Instance Segmentation},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {15467-15476}
}
Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST
Hust Visual Learning Team
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 03, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 03, 2022
An open source implementation of CLIP.

OpenCLIP Welcome to an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training). The goal of this repository is to enable

2.7k Dec 31, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022