Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Related tags

Deep LearningUFLoss
Overview

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Official github repository for the paper High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss. In this work, a novel patch-based Unsupervised Feature loss (UFLoss) is proposed and incorporated into the training of DL-based reconstruction frameworks in order to preserve perceptual similarity and high-order statistics. In-vivo experiments indicate that adding the UFLoss encourages sharper edges with higher overall image quality under DL-based reconstruction framework. Our implementations are in PyTorch

Installation

To use this package, install the required python packages (tested with python 3.8 on Ubuntu 20.04 LTS):

pip install -r requirements.txt

Dataset

We used a subset of FastMRI knee dataset for the training and evaluation. We used E-SPIRiT to pre-compute sensitivity maps using BART. Post-processed data (including Sens Maps, Coil combined images) and pre-trained model can be requested by emailing [email protected].

Update We provide our data-preprocessing code at UFloss_training/data_preprocessing.py. This script computes the sensitivity maps and performs data normalization and coil combination. BART toolbox is required for computing the sensitivity maps. Follow the installation instructions on the website and add the following lines to your .bashrc file.

/python/" export PATH=" :$PATH"">
export PYTHONPATH="${PYTHONPATH}:
    
     /python/
     "
    
export PATH="
    
     :
     $PATH
     "
    

To run the data-preprocessing code, download and unzip the fastMRI Multi-coil knee dataset. Simplu run

python data_preprocessing.py -l <path to your fastMRI multi-coil dataset> -t <target directory> -c <size for your E-SPIRiT calibration region>

Step 0: Patch Extraction

To extract patches from the fully-smapled training data, go to the UFloss_training/ folder and run patch_extraction.py to extract patches. Please specify the directories of the training dataset and the target folder. Instructions are avaible by runing:

python patch_extraction.py -h

Step 1: Train the UFLoss feature mapping network

To train the UFLoss feature mapping network, go to the UFloss_training/ folder and run patch_learning.py. We provide a demo training script to perform the training on fully-sampled patches:

bash launch_training_patch_learning.sh

Visualiztion (Patch retrival results, shown below) script will be available soon.

Step 2: Train the DL-based reconstruction with UFLoss

To train the DL-based reconstruction with UFLoss, we provide our source code here at DL_Recon_UFLoss/. We adoped MoDL as our DL-based reconstruction network. We provide training scripts for MoDL with and without UFLoss at DL_Recon_UFLoss/models/unrolled2D/scripts:

bash launch_training_MoDL_traditional_UFLoss_256_demo.sh

You can easily paly around with the parameters by editing the training script. One representative reconstruction results is shown as below.

Perform inference with the trained model

To perform the inference reconstruction on the testing set, we provide an inference script at DL_Recon_UFLoss/models/unrolled2D/inference_ufloss.py. run the following command for inference:

python inference_ufloss.py --data-path <Path to the dataset> 
                        --device-num <Which device to train on>
                        --exp-dir <Path where the results should be saved>
                        --checkpoint <Path to an existing checkpoint>

Acknoledgements

Reconstruction code borrows heavily from fastMRI Github repo and DL-ESPIRiT by Christopher Sandino. This work is a colaboration between UC Berkeley and GE Healthcare. Please contact [email protected] if you have any questions.

Citation

If you find this code useful for your research, please consider citing our paper High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss:

@article{wang2021high,
  title={High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss},
  author={Wang, Ke and Tamir, Jonathan I and De Goyeneche, Alfredo and Wollner, Uri and Brada, Rafi and Yu, Stella and Lustig, Michael},
  journal={arXiv preprint arXiv:2108.12460},
  year={2021}
}
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022