Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Related tags

Deep LearningUFLoss
Overview

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Official github repository for the paper High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss. In this work, a novel patch-based Unsupervised Feature loss (UFLoss) is proposed and incorporated into the training of DL-based reconstruction frameworks in order to preserve perceptual similarity and high-order statistics. In-vivo experiments indicate that adding the UFLoss encourages sharper edges with higher overall image quality under DL-based reconstruction framework. Our implementations are in PyTorch

Installation

To use this package, install the required python packages (tested with python 3.8 on Ubuntu 20.04 LTS):

pip install -r requirements.txt

Dataset

We used a subset of FastMRI knee dataset for the training and evaluation. We used E-SPIRiT to pre-compute sensitivity maps using BART. Post-processed data (including Sens Maps, Coil combined images) and pre-trained model can be requested by emailing [email protected].

Update We provide our data-preprocessing code at UFloss_training/data_preprocessing.py. This script computes the sensitivity maps and performs data normalization and coil combination. BART toolbox is required for computing the sensitivity maps. Follow the installation instructions on the website and add the following lines to your .bashrc file.

/python/" export PATH=" :$PATH"">
export PYTHONPATH="${PYTHONPATH}:
    
     /python/
     "
    
export PATH="
    
     :
     $PATH
     "
    

To run the data-preprocessing code, download and unzip the fastMRI Multi-coil knee dataset. Simplu run

python data_preprocessing.py -l <path to your fastMRI multi-coil dataset> -t <target directory> -c <size for your E-SPIRiT calibration region>

Step 0: Patch Extraction

To extract patches from the fully-smapled training data, go to the UFloss_training/ folder and run patch_extraction.py to extract patches. Please specify the directories of the training dataset and the target folder. Instructions are avaible by runing:

python patch_extraction.py -h

Step 1: Train the UFLoss feature mapping network

To train the UFLoss feature mapping network, go to the UFloss_training/ folder and run patch_learning.py. We provide a demo training script to perform the training on fully-sampled patches:

bash launch_training_patch_learning.sh

Visualiztion (Patch retrival results, shown below) script will be available soon.

Step 2: Train the DL-based reconstruction with UFLoss

To train the DL-based reconstruction with UFLoss, we provide our source code here at DL_Recon_UFLoss/. We adoped MoDL as our DL-based reconstruction network. We provide training scripts for MoDL with and without UFLoss at DL_Recon_UFLoss/models/unrolled2D/scripts:

bash launch_training_MoDL_traditional_UFLoss_256_demo.sh

You can easily paly around with the parameters by editing the training script. One representative reconstruction results is shown as below.

Perform inference with the trained model

To perform the inference reconstruction on the testing set, we provide an inference script at DL_Recon_UFLoss/models/unrolled2D/inference_ufloss.py. run the following command for inference:

python inference_ufloss.py --data-path <Path to the dataset> 
                        --device-num <Which device to train on>
                        --exp-dir <Path where the results should be saved>
                        --checkpoint <Path to an existing checkpoint>

Acknoledgements

Reconstruction code borrows heavily from fastMRI Github repo and DL-ESPIRiT by Christopher Sandino. This work is a colaboration between UC Berkeley and GE Healthcare. Please contact [email protected] if you have any questions.

Citation

If you find this code useful for your research, please consider citing our paper High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss:

@article{wang2021high,
  title={High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss},
  author={Wang, Ke and Tamir, Jonathan I and De Goyeneche, Alfredo and Wollner, Uri and Brada, Rafi and Yu, Stella and Lustig, Michael},
  journal={arXiv preprint arXiv:2108.12460},
  year={2021}
}
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
Semi-SDP Semi-supervised parser for semantic dependency parsing.

Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i

12 Sep 17, 2021
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022