Image Captioning using CNN and Transformers

Overview

Image-Captioning

Keras/Tensorflow Image Captioning application using CNN and Transformer as encoder/decoder.
In particulary, the architecture consists of three models:

  1. A CNN: used to extract the image features. In this application, it used EfficientNetB0 pre-trained on imagenet.
  2. A TransformerEncoder: the extracted image features are then passed to a Transformer based encoder that generates a new representation of the inputs.
  3. A TransformerDecoder: this model takes the encoder output and the text data sequence as inputs and tries to learn to generate the caption.

Dataset

The model has been trained on 2014 Train/Val COCO dataset. You can download the dataset here. Note that test images are not required for this code to work.

Original dataset has 82783 train images and 40504 validation images; for each image there is a number of captions between 1 and 6. I have preprocessing the dataset per to keep only images that have exactly 5 captions. In fact, the model has been trained to ensure that 5 captions are assigned for each image. After this filtering, the final dataset has 68363 train images and 33432 validation images.
Finally, I serialized the dataset into two json files which you can find in:

COCO_dataset/captions_mapping_train.json
COCO_dataset/captions_mapping_valid.json

Each element in the captions_mapping_train.json file has such a structure :
"COCO_dataset/train2014/COCO_train2014_000000318556.jpg": ["caption1", "caption2", "caption3", "caption4", "caption5"], ...

In same way in the captions_mapping_valid.json :
"COCO_dataset/val2014/COCO_val2014_000000203564.jpg": ["caption1", "caption2", "caption3", "caption4", "caption5"], ...

Dependencies

I have used the following versions for code work:

  • python==3.8.8
  • tensorflow==2.4.1
  • tensorflow-gpu==2.4.1
  • numpy==1.19.1
  • h5py==2.10.0

Training

To train the model you need to follow the following steps :

  1. you have to make sure that the training set images are in the folder COCO_dataset/train2014/ and that validation set images are in COCO_dataset/val2014/.
  2. you have to enter all the parameters necessary for the training in the settings.py file.
  3. start the model training with python3 training.py

My settings

For my training session, I have get best results with this settings.py file :

# Desired image dimensions
IMAGE_SIZE = (299, 299)
# Max vocabulary size
MAX_VOCAB_SIZE = 2000000
# Fixed length allowed for any sequence
SEQ_LENGTH = 25
# Dimension for the image embeddings and token embeddings
EMBED_DIM = 512
# Number of self-attention heads
NUM_HEADS = 6
# Per-layer units in the feed-forward network
FF_DIM = 1024
# Shuffle dataset dim on tf.data.Dataset
SHUFFLE_DIM = 512
# Batch size
BATCH_SIZE = 64
# Numbers of training epochs
EPOCHS = 14

# Reduce Dataset
# If you want reduce number of train/valid images dataset, set 'REDUCE_DATASET=True'
# and set number of train/valid images that you want.
#### COCO dataset
# Max number train dataset images : 68363
# Max number valid dataset images : 33432
REDUCE_DATASET = False
# Number of train images -> it must be a value between [1, 68363]
NUM_TRAIN_IMG = None
# Number of valid images -> it must be a value between [1, 33432]
NUM_VALID_IMG = None
# Data augumention on train set
TRAIN_SET_AUG = True
# Data augmention on valid set
VALID_SET_AUG = False

# Load train_data.json pathfile
train_data_json_path = "COCO_dataset/captions_mapping_train.json"
# Load valid_data.json pathfile
valid_data_json_path = "COCO_dataset/captions_mapping_valid.json"
# Load text_data.json pathfile
text_data_json_path  = "COCO_dataset/text_data.json"

# Save training files directory
SAVE_DIR = "save_train_dir/"

I have training model on full dataset (68363 train images and 33432 valid images) but you can train the model on a smaller number of images by changing the NUM_TRAIN_IMG / NUM_VALID_IMG parameters to reduce the training time and hardware resources required.

Data augmention

I applied data augmentation on the training set during the training to reduce the generalization error, with this transformations (this code is write in dataset.py) :

trainAug = tf.keras.Sequential([
    	tf.keras.layers.experimental.preprocessing.RandomContrast(factor=(0.05, 0.15)),
    	tf.keras.layers.experimental.preprocessing.RandomTranslation(height_factor=(-0.10, 0.10), width_factor=(-0.10, 0.10)),
	tf.keras.layers.experimental.preprocessing.RandomZoom(height_factor=(-0.10, 0.10), width_factor=(-0.10, 0.10)),
	tf.keras.layers.experimental.preprocessing.RandomRotation(factor=(-0.10, 0.10))
])

You can customize your data augmentation by changing this code or disable data augmentation setting TRAIN_SET_AUG = False in setting.py.

My results

This is results of my best training :

Epoch 1/13
1069/1069 [==============================] - 1450s 1s/step - loss: 17.3777 - acc: 0.3511 - val_loss: 13.9711 - val_acc: 0.4819
Epoch 2/13
1069/1069 [==============================] - 1453s 1s/step - loss: 13.7338 - acc: 0.4850 - val_loss: 12.7821 - val_acc: 0.5133
Epoch 3/13
1069/1069 [==============================] - 1457s 1s/step - loss: 12.9772 - acc: 0.5069 - val_loss: 12.3980 - val_acc: 0.5229
Epoch 4/13
1069/1069 [==============================] - 1452s 1s/step - loss: 12.5683 - acc: 0.5179 - val_loss: 12.2659 - val_acc: 0.5284
Epoch 5/13
1069/1069 [==============================] - 1450s 1s/step - loss: 12.3292 - acc: 0.5247 - val_loss: 12.1828 - val_acc: 0.5316
Epoch 6/13
1069/1069 [==============================] - 1443s 1s/step - loss: 12.1614 - acc: 0.5307 - val_loss: 12.1410 - val_acc: 0.5341
Epoch 7/13
1069/1069 [==============================] - 1453s 1s/step - loss: 12.0461 - acc: 0.5355 - val_loss: 12.1234 - val_acc: 0.5354
Epoch 8/13
1069/1069 [==============================] - 1440s 1s/step - loss: 11.9533 - acc: 0.5407 - val_loss: 12.1086 - val_acc: 0.5367
Epoch 9/13
1069/1069 [==============================] - 1444s 1s/step - loss: 11.8838 - acc: 0.5427 - val_loss: 12.1235 - val_acc: 0.5373
Epoch 10/13
1069/1069 [==============================] - 1443s 1s/step - loss: 11.8114 - acc: 0.5460 - val_loss: 12.1574 - val_acc: 0.5367
Epoch 11/13
1069/1069 [==============================] - 1444s 1s/step - loss: 11.7543 - acc: 0.5486 - val_loss: 12.1518 - val_acc: 0.5371

These are good results considering that for each image given as input to the model during training, the error and the accuracy are averaged over 5 captions. However, I spent little time doing model selection and you can improve the results by trying better settings.
For example, you could :

  1. change CNN architecture.
  2. change SEQ_LENGTH, EMBED_DIM, NUM_HEADS, FF_DIM, BATCH_SIZE (etc...) parameters.
  3. change data augmentation transformations/parameters.
  4. etc...

N.B. I have saved my best training results files in the directory save_train_dir/.

Inference

After training and saving the model, you can restore it in a new session to inference captions on new images.
To generate a caption from a new image, you must :

  1. insert the parameters in the file settings_inference.py
  2. run python3 inference.py --image={image_path_file}

Results example

Examples of image output taken from the validation set.

a large passenger jet flying through the sky
a man in a white shirt and black shorts playing tennis
a person on a snowboard in the snow
a boy on a skateboard in the street
a black bear is walking through the grass
a train is on the tracks near a station
Owner
I love computer vision and NLP. I love artificial intelligence. Machine Learning and Big Data master's degree student.
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
[ACM MM 2021] Yes, "Attention is All You Need", for Exemplar based Colorization

Transformer for Image Colorization This is an implemention for Yes, "Attention Is All You Need", for Exemplar based Colorization, and the current soft

Wang Yin 30 Dec 07, 2022
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022