Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Overview

Improved Few-Shot Visual Classification

This repository contains source codes for the following papers:

The code base has been authored by Peyman Bateni, Jarred Barber, Raghav Goyal, Vaden Masrani, Dr. Jan-Willemn van de Meent, Dr. Leonid Sigal and Dr. Frank Wood. The source codes build on the original code base for CNAPS authored by Dr. John Bronskill, Jonathan Gordon, James Reqeima, Dr. Sebastian Nowozin, and Dr. Richard E. Turner. We would like to thank them for their help, support and early sharing of their work. To see the original CNAPS repository, visit https://github.com/cambridge-mlg/cnaps.

Simple CNAPS

Simple CNAPS proposes the use of hierarchically regularized cluster means and covariance estimates within a Mahalanobis-distance based classifer for improved few-shot classification accuracy. This method incorporates said classifier within the same neural adaptive feature extractor as CNAPS. For more details, please refer to our paper on Simple CNAPS: Improved Few-Shot Visual Classification. The source code for this paper has been provided in the simple-cnaps-src directory. To reproduce our results, please refer to the README.md file within that folder.

Global Meta-Dataset Rank (Simple CNAPS): https://github.com/google-research/meta-dataset#training-on-all-datasets

Global Mini-ImageNet Rank (Simple CNAPS):

PWC PWC PWC PWC

Global Tiered-ImageNet Rank (Simple CNAPS):

PWC PWC PWC PWC

Transductive CNAPS

Transductive CNAPS extends the Simple CNAPS framework to the transductive few-shot learning setting where all query examples are provided at once. This method uses a two-step transductive task-encoder for adapting the feature extractor as well as a soft k-means cluster refinement procedure, resulting in better test-time accuracy. For additional details, please refer to our paper on Transductive CNAPS: Enhancing Few-Shot Image Classification with Unlabelled Examples. The source code for this work is provided under the transductive-cnaps-src directory. To reproduce our results, please refer to the README.md file within this folder.

Global Meta-Dataset Rank (Transductive CNAPS): https://github.com/google-research/meta-dataset#training-on-all-datasets

Global Mini-ImageNet Rank (Transductive CNAPS):

PWC PWC PWC PWC

Global Tiered-ImageNet Rank (Transductive CNAPS):

PWC PWC PWC PWC

Active and Continual Learning

We additionally evaluate both methods within the paradigms of "out of the box" active and continual learning. These settings were first proposed by Requeima et al., and studies how well few-shot classifiers, trained for few-shot learning, can be deployed for active and continual learning without any problem-specific finetuning or training. For additional details on our active and continual learning experiments and algorithms, please refer to our latest paper: Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning. For code and instructions to reproduce the experiments reported, please refer to the active-learning and continual-learning folders.

Meta-Dataset Results

| Dataset | Simple CNAPS | Simple CNAPS | Transductive CNAPS | Transductive CNAPS |

--shuffle_dataset False False True False True
In-Domain Datasets --- --- --- ---
ILSVRC 58.6±1.1 56.5±1.1 58.8±1.1 57.9±1.1
Omniglot 91.7±0.6 91.9±0.6 93.9±0.4 94.3±0.4
Aircraft 82.4±0.7 83.8±0.6 84.1±0.6 84.7±0.5
Birds 74.9±0.8 76.1±0.9 76.8±0.8 78.8±0.7
Textures 67.8±0.8 70.0±0.8 69.0±0.8 66.2±0.8
Quick Draw 77.7±0.7 78.3±0.7 78.6±0.7 77.9±0.6
Fungi 46.9±1.0 49.1±1.2 48.8±1.1 48.9±1.2
VGG Flower 90.7±0.5 91.3±0.6 91.6±0.4 92.3±0.4
Out-of-Domain Datasets --- --- --- ---
Traffic Signs 73.5±0.7 59.2±1.0 76.1±0.7 59.7±1.1
MSCOCO 46.2±1.1 42.4±1.1 48.7±1.0 42.5±1.1
MNIST 93.9±0.4 94.3±0.4 95.7±0.3 94.7±0.3
CIFAR10 74.3±0.7 72.0±0.8 75.7±0.7 73.6±0.7
CIFAR100 60.5±1.0 60.9±1.1 62.9±1.0 61.8±1.0
--- --- --- --- ---
In-Domain Average Accuracy 73.8±0.8 74.6±0.8 75.2±0.8 75.1±0.8
Out-of-Domain Average Accuracy 69.7±0.8 65.8±0.8 71.8±0.8 66.5±0.8
Overall Average Accuracy 72.2±0.8 71.2±0.8 73.9±0.8 71.8±0.8

Mini-ImageNet Results

Setup 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot
Simple CNAPS 53.2±0.9 70.8±0.7 37.1±0.5 56.7±0.5
Transductive CNAPS 55.6±0.9 73.1±0.7 42.8±0.7 59.6±0.5
--- --- --- --- ---
Simple CNAPS + FETI 77.4±0.8 90.3±0.4 63.5±0.6 83.1±0.4
Transductive CNAPS + FETI 79.9±0.8 91.5±0.4 68.5±0.6 85.9±0.3

Tiered-ImageNet Results

Setup 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot
Simple CNAPS 63.0±1.0 80.0±0.8 48.1±0.7 70.2±0.6
Transductive CNAPS 65.9±1.0 81.8±0.7 54.6±0.8 72.5±0.6
--- --- --- --- ---
Simple CNAPS + FETI 71.4±1.0 86.0±0.6 57.1±0.7 78.5±0.5
Transductive CNAPS + FETI 73.8±1.0 87.7±0.6 65.1±0.8 80.6±0.5

Citation

We hope you have found our code base helpful! If you use this repository, please cite our papers:

@InProceedings{Bateni2020_SimpleCNAPS,
    author = {Bateni, Peyman and Goyal, Raghav and Masrani, Vaden and Wood, Frank and Sigal, Leonid},
    title = {Improved Few-Shot Visual Classification},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2020}
}

@InProceedings{Bateni2022_TransductiveCNAPS,
    author    = {Bateni, Peyman and Barber, Jarred and van de Meent, Jan-Willem and Wood, Frank},
    title     = {Enhancing Few-Shot Image Classification With Unlabelled Examples},
    booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
    month     = {January},
    year      = {2022},
    pages     = {2796-2805}
}

@misc{Bateni2022_BeyondSimpleMetaLearning,
    title={Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning}, 
    author={Peyman Bateni and Jarred Barber and Raghav Goyal and Vaden Masrani and Jan-Willem van de Meent and Leonid Sigal and Frank Wood},
    year={2022},
    eprint={2201.05151},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

**If you would like to ask any questions or reach out regarding any of the papers, please email me directly at [email protected] (my cs.ubc.ca email may have expired by the time you are emailing as I have graduated!).

Owner
PLAI Group at UBC
PLAI Group at UBC
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
Code and models used in "MUSS Multilingual Unsupervised Sentence Simplification by Mining Paraphrases".

Multilingual Unsupervised Sentence Simplification Code and pretrained models to reproduce experiments in "MUSS: Multilingual Unsupervised Sentence Sim

Facebook Research 81 Dec 29, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022