Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Overview

Improved Few-Shot Visual Classification

This repository contains source codes for the following papers:

The code base has been authored by Peyman Bateni, Jarred Barber, Raghav Goyal, Vaden Masrani, Dr. Jan-Willemn van de Meent, Dr. Leonid Sigal and Dr. Frank Wood. The source codes build on the original code base for CNAPS authored by Dr. John Bronskill, Jonathan Gordon, James Reqeima, Dr. Sebastian Nowozin, and Dr. Richard E. Turner. We would like to thank them for their help, support and early sharing of their work. To see the original CNAPS repository, visit https://github.com/cambridge-mlg/cnaps.

Simple CNAPS

Simple CNAPS proposes the use of hierarchically regularized cluster means and covariance estimates within a Mahalanobis-distance based classifer for improved few-shot classification accuracy. This method incorporates said classifier within the same neural adaptive feature extractor as CNAPS. For more details, please refer to our paper on Simple CNAPS: Improved Few-Shot Visual Classification. The source code for this paper has been provided in the simple-cnaps-src directory. To reproduce our results, please refer to the README.md file within that folder.

Global Meta-Dataset Rank (Simple CNAPS): https://github.com/google-research/meta-dataset#training-on-all-datasets

Global Mini-ImageNet Rank (Simple CNAPS):

PWC PWC PWC PWC

Global Tiered-ImageNet Rank (Simple CNAPS):

PWC PWC PWC PWC

Transductive CNAPS

Transductive CNAPS extends the Simple CNAPS framework to the transductive few-shot learning setting where all query examples are provided at once. This method uses a two-step transductive task-encoder for adapting the feature extractor as well as a soft k-means cluster refinement procedure, resulting in better test-time accuracy. For additional details, please refer to our paper on Transductive CNAPS: Enhancing Few-Shot Image Classification with Unlabelled Examples. The source code for this work is provided under the transductive-cnaps-src directory. To reproduce our results, please refer to the README.md file within this folder.

Global Meta-Dataset Rank (Transductive CNAPS): https://github.com/google-research/meta-dataset#training-on-all-datasets

Global Mini-ImageNet Rank (Transductive CNAPS):

PWC PWC PWC PWC

Global Tiered-ImageNet Rank (Transductive CNAPS):

PWC PWC PWC PWC

Active and Continual Learning

We additionally evaluate both methods within the paradigms of "out of the box" active and continual learning. These settings were first proposed by Requeima et al., and studies how well few-shot classifiers, trained for few-shot learning, can be deployed for active and continual learning without any problem-specific finetuning or training. For additional details on our active and continual learning experiments and algorithms, please refer to our latest paper: Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning. For code and instructions to reproduce the experiments reported, please refer to the active-learning and continual-learning folders.

Meta-Dataset Results

| Dataset | Simple CNAPS | Simple CNAPS | Transductive CNAPS | Transductive CNAPS |

--shuffle_dataset False False True False True
In-Domain Datasets --- --- --- ---
ILSVRC 58.6±1.1 56.5±1.1 58.8±1.1 57.9±1.1
Omniglot 91.7±0.6 91.9±0.6 93.9±0.4 94.3±0.4
Aircraft 82.4±0.7 83.8±0.6 84.1±0.6 84.7±0.5
Birds 74.9±0.8 76.1±0.9 76.8±0.8 78.8±0.7
Textures 67.8±0.8 70.0±0.8 69.0±0.8 66.2±0.8
Quick Draw 77.7±0.7 78.3±0.7 78.6±0.7 77.9±0.6
Fungi 46.9±1.0 49.1±1.2 48.8±1.1 48.9±1.2
VGG Flower 90.7±0.5 91.3±0.6 91.6±0.4 92.3±0.4
Out-of-Domain Datasets --- --- --- ---
Traffic Signs 73.5±0.7 59.2±1.0 76.1±0.7 59.7±1.1
MSCOCO 46.2±1.1 42.4±1.1 48.7±1.0 42.5±1.1
MNIST 93.9±0.4 94.3±0.4 95.7±0.3 94.7±0.3
CIFAR10 74.3±0.7 72.0±0.8 75.7±0.7 73.6±0.7
CIFAR100 60.5±1.0 60.9±1.1 62.9±1.0 61.8±1.0
--- --- --- --- ---
In-Domain Average Accuracy 73.8±0.8 74.6±0.8 75.2±0.8 75.1±0.8
Out-of-Domain Average Accuracy 69.7±0.8 65.8±0.8 71.8±0.8 66.5±0.8
Overall Average Accuracy 72.2±0.8 71.2±0.8 73.9±0.8 71.8±0.8

Mini-ImageNet Results

Setup 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot
Simple CNAPS 53.2±0.9 70.8±0.7 37.1±0.5 56.7±0.5
Transductive CNAPS 55.6±0.9 73.1±0.7 42.8±0.7 59.6±0.5
--- --- --- --- ---
Simple CNAPS + FETI 77.4±0.8 90.3±0.4 63.5±0.6 83.1±0.4
Transductive CNAPS + FETI 79.9±0.8 91.5±0.4 68.5±0.6 85.9±0.3

Tiered-ImageNet Results

Setup 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot
Simple CNAPS 63.0±1.0 80.0±0.8 48.1±0.7 70.2±0.6
Transductive CNAPS 65.9±1.0 81.8±0.7 54.6±0.8 72.5±0.6
--- --- --- --- ---
Simple CNAPS + FETI 71.4±1.0 86.0±0.6 57.1±0.7 78.5±0.5
Transductive CNAPS + FETI 73.8±1.0 87.7±0.6 65.1±0.8 80.6±0.5

Citation

We hope you have found our code base helpful! If you use this repository, please cite our papers:

@InProceedings{Bateni2020_SimpleCNAPS,
    author = {Bateni, Peyman and Goyal, Raghav and Masrani, Vaden and Wood, Frank and Sigal, Leonid},
    title = {Improved Few-Shot Visual Classification},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2020}
}

@InProceedings{Bateni2022_TransductiveCNAPS,
    author    = {Bateni, Peyman and Barber, Jarred and van de Meent, Jan-Willem and Wood, Frank},
    title     = {Enhancing Few-Shot Image Classification With Unlabelled Examples},
    booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
    month     = {January},
    year      = {2022},
    pages     = {2796-2805}
}

@misc{Bateni2022_BeyondSimpleMetaLearning,
    title={Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning}, 
    author={Peyman Bateni and Jarred Barber and Raghav Goyal and Vaden Masrani and Jan-Willem van de Meent and Leonid Sigal and Frank Wood},
    year={2022},
    eprint={2201.05151},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

**If you would like to ask any questions or reach out regarding any of the papers, please email me directly at [email protected] (my cs.ubc.ca email may have expired by the time you are emailing as I have graduated!).

Owner
PLAI Group at UBC
PLAI Group at UBC
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

4.2k Jan 01, 2023
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".

Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational

International Business Machines 13 Nov 11, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022