Robust Partial Matching for Person Search in the Wild

Related tags

Deep LearningAPNet
Overview

APNet for Person Search

Introduction

This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part Network(APNet) is proposed to alleviate the misalignment problem occurred in pedestrian detector, facilitating the downstream re-identification task. The code is based on maskrcnn-benchmark.

Quick start

Installation

  1. Please follow the offical installation INSTALL.md. This code does not support the mixed precision training, so feel free to skip the installation of apex.

NOTE: If you meet some problems during the installation, you may find a solution in issues of official maskrcnn-benchmark.

  1. Install APNet
git clone https://github.com/zhongyingji/APNet.git
cd APNet
rm -rf build/
python setup.py build develop

Dataset Preparation

Make sure you have downloaded the dataset of person search like PRW-v16.04.20.

  1. Since the training of APNet relies on the keypoint annotation, we provide the keypoint estimation file by AlphaPose in keypoint_pred/. Copy all the files into the root dir of dataset, like /path_to_prw_dataset/PRW-v16.04.20/:
cp keypoint_pred/* /path_to_prw_dataset/PRW-v16.04.20/
  1. Symlink the path to the dataset to datasets/ as follows:
ln -s /path_to_prw_dataset/PRW-v16.04.20/ maskrcnn_benchmark/datasets/PRW-v16.04.20

Training

APNet composes of three modules, OIM, RSFE and BBA. To train the entire network, you can simply run:

./train.sh

which contains the training scripts of the three modules.

NOTE: Both RSFE and BBA are required to be intialised with the trained OIM. For more details, please check train.sh.

You can alter the scripts in train.sh in the following aspects:

  1. We train OIM on 2 GPUS with batchsize 4. If you encounter out-of-memory (OOM) error, reduce the batchsize by setting SOLVER.IMS_PER_BATCH to a smaller number.

  2. If you want to use 1 GPU, replace the command of OIM with single GPU training script:

python tools/train_net.py --config-file "configs/reid/prw_R_50_C4.yaml" SOLVER.IMS_PER_BATCH 2 TEST.IMS_PER_BATCH 8 OUTPUT_DIR "models/prw_oim"

Test

After each of the module has been trained, you can run exactly the same training script of that module to test the performance.

Citation

If you find this work or code is helpful in your research, please consider citing:

Owner
Yingji Zhong
Yingji Zhong
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.

dm_control: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning en

DeepMind 3k Dec 31, 2022
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Leo Xiao 3.9k Jan 05, 2023
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022